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Abstract

The lack of detailed spatial information on coastal resources, notably shallow

water coral reefs and associated benthic habitats, impedes our ability to protect

and manage them in the face of global climate change and anthropogenic

impacts. Here, we develop a semi-automated workflow in the cloud that uses

freely available Sentinel-2 data from the European Space Agency (ESA) Coper-

nicus programme to derive information on near-shore coral reef habitats in the

Quirimbas National Park (QNP), a recently declared biosphere reserve in

northern Mozambique. We use an end-to-end cloud-based framework within

the Google Earth Engine cloud geospatial platform to process imagery from

raw pixels to cloud-free composites which are corrected for glint and surface

artefacts, water column and derived estimated depth and then classified into

four benthic habitats. Using independent training and validation data, we apply

three supervised classification algorithms: random forests (RF), support vector

machine (SVM) and classification and regression trees (CART). Our results

show that random forests are the most accurate supervised algorithm with over

82% overall accuracy. We mapped over 105 000 ha of shallow water habitat

inside the protected area, of which 18% are dominated by coral and hardbot-

tom; 27.5% are seagrass and submerged aquatic vegetation and another 23.4%

are soft and sandy substrates, and the remaining area is optically deep water.

We employ satellite-derived bathymetry to assess slope, bathymetric position,

rugosity and underwater topography of these habitats. Finally, a spectral unmix-

ing model provides further sub-pixel–level information of habitats with the

potential to monitor changes over time. This effort provides the first, consistent

and repeatable and also scalable coastal information system for an east African

tropical marine protected area, which hosts shallow-water ecosystems which are

of great significance to local communities and building resilience towards cli-

mate change.

Introduction

With a shoreline of over 2700 km, Mozambique hosts a

unique number of coastal habitats, including some of the

most climate-resilient coral reefs in the world, represent-

ing an important opportunity for conservation (Beyer

et al., 2018). The western Indian Ocean also features a

very high biological diversity: more than 1500 fish species,

200 coral species, 14 mangrove species, 12 seagrass spe-

cies, 1000 marine algae species, hundreds of species of

sponges, and 300 crab species (Richmond, 2000). The

region also hosts unique megafauna, including whales,

sharks, rays and endangered marine turtles and dugongs

(UNEP, 2004). These globally significant marine and

coastal habitats provide essential ecosystem services such

as carbon sequestration and climate mitigation, and
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essential nurseries for aquatic species to provide food and

livelihoods for many (Mcleod et al., 2011; Nordlund

et al., 2018; Sitoe et al., 2010).

The dependence on natural resources in Mozambique

is high, with as many as 80% of employment relying on

sectors such as agriculture, fisheries and mining

(Macamo, 2019). The fishing industry provides a signifi-

cant contribution to the national GDP, while artisanal

fisheries comprise 90% of production and the main

source of employment and food sources in coastal com-

munities – where most of the Mozambique’s population

reside (Macamo, 2019). Meanwhile, Mozambique is a

rapidly growing tourism destination, relying on intact

ecosystems and its wealth of biodiversity and wildlife for

this economic sector. Despite the value of these coastal

ecosystems, increased pressure on marine resources has

created significant ecological changes in many parts of the

East African coastline. Overfishing has resulted in the

decline in great whale populations and valuable fishery

species, as well as the degradation of important seagrass

beds and coral reef habitats (Sj€ostedt & Sundstr€om,

2013). Many species are heavily over-fished, with destruc-

tive methods such as gill nets and dynamite still being

used (Obura, Souter, & Linden, 2005), along with under-

reported catches putting the entire industry at risk of

overexploitation (Jacquet et al., 2010). Demand for build-

ing materials such as mangrove poles and corals for lime,

along with increasing need for agricultural land have fur-

ther contributed to habitat destruction (Kideghesho,

2009). All these impacts disturb the ecological balance,

reduce the capacity for secure livelihoods and food secu-

rity for local populations, as severely damaged coral reefs

and seagrass beds can not provide critical ecosystem ser-

vices.

Management approaches to mitigate the pressures in

the marine regime have been developed and applied

worldwide, including via Marine Protected Areas (MPAs)

and Marine Managed Areas (MMAs), which can be

implemented to offer a range of ecological, social, cultural

and economic benefits (Claudet, 2011). The location,

design, characteristics and on-going management of these

areas, however, ultimately drive the extent to which the

benefits could be achieved in practice. In Mozambique,

MPAs and MMAs have been designated, including the

Quirimbas National Park (QNP), a recently designated

international biosphere reserve (UNESCO, 2018) protect-

ing some of the most resilient reef systems in the region

(Hill et al., 2010).

QNP was established in 2002, however, few readily

accessible accurate spatial information exist to contribute

to a comprehensive baseline for the coastal marine seas-

cape ecosystems to enable informed management prac-

tices, detailed zoning and distribution of human activities

such as fishing limitations, no-take zones or adaptive

management responses to address changes in marine

ecosystems. The types of management which benefit from

accurate spatial data include the location and designation

of temporary closures and sanctuaries for management or

recovery of fish resources, more specifically octopus clo-

sures; regulating uses in designated tourist areas; and con-

tinued monitoring over time to ensure resilient and

functioning reef systems which ensure that the main goals

of the protected area are being achieved – in this case

sustainable supporting local livelihoods. What limited

available data exist (e.g. RCRMD, 2015) are either out of

date, of insufficient resolution, do no have any compre-

hensive metadata to assess the status, lack accuracy assess-

ment or are not derived from automated methods,

making them difficult to reproduce over time. Other

datasets like the recently released Allen Coral Atlas (Lyons

et al., 2020) are global products derived from commercial

imagery which have limited local validation and accuracy

assessment. Although they offer a much improved spatial

resolution, and provide valuable geomorphic zone infor-

mation, this dataset derived from commercial imagery

comes with the potential trade-off of a lower temporal

resolution, meaning fewer updates which can be delivered

or requested, or large datasets which cannot be easily

accessed or manipulated in remote locations. Therefore, a

complementary data source with simple outputs for pro-

tected areas managers is desired for continuous, flexible

and adaptable monitoring.

Here, we present the first cloud-based semi-automated

approach that uses Copernicus Sentinel-2 optical imagery

to map the entire coastal area of Quirimbas National Park

in Mozambique, whose reefs possess world-reknowned

refugia and environmental variability enabling resilience

and potential adaptation of rapid climate change

(McClanahan & Muthiga, 2017). Our main aim is to pro-

vide consistent mapping of the underwater structure and

habitats of the coral reefs, seagrasses and neighbouring

underwater shallow-water seascape which can be repeated

over time for monitoring, and scaled and expanded to

other regions. This information can assist comprehensive

conservation activities, management decisions, sustainable

development planning for more effective climate change

mitigation, resilience and adaptation in the broader

region of East Africa providing a crucial starting point for

continued operational monitoring.

Many small-scale coral reef habitat mapping studies

have relied on high-resolution commercial data, while lar-

ger-scales and longer-term monitoring is more appropri-

ate for medium resolution (30 m) from Landsat, which

up until 2016 was the dominant free data source (Hedley

et al., 2016). The open availability of the Landsat archive

since 2008 (Wulder et al., 2012) has provided millions of
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scenes covering almost all areas of the world, enabling great

progress for seascape mapping. This includes monitoring

and change detection to assess the impacts of natural haz-

ards and climate change, which include the increase in fre-

quency and severity of cyclones and associated surges, and

coral bleaching due to sea surface temperature increases

(Green et al., 1998; Hedley et al., 2016; Liu et al., 2014;

Pham et al., 2019). Despite being launched as a terrestrial

mission in 2015, the ESA Copernicus Sentinel-2 constella-

tion consisting of two satellites has notably increased spatial

and temporal resolution and data availability for a signifi-

cant number of coral reefs (Hedley et al., 2018). A signifi-

cant benefit is the minimum mapping unit (MMU),

whereas for Landsat is 900 m2 as a result of the 30 m

square pixel, for Sentinel-2 is decreased to 100 m2 via the

10-m resolution (Tobler, 1988). The higher temporal reso-

lution also increases the chances for suitable cloud-free

data, stable sea states or clear water. As such, the 5-day time

interval and the smaller pixel size allows more effective

multi-temporal image composition (Traganos et al., 2018a)

and, hence, renders an accurate detection of homogeneous

seascape elements such as hard bottom substrates for coral

reefs, seagrass meadows and algae/turfs, as the coastal

waters are rarely a homogeneous system in the tropics and

elsewhere. These data can also be used to evaluate relative

bathymetry and underwater structure which inform marine

spatial planning including zoning and managing uses of

resources (Douvere, 2008). These elements greatly enhance

coastal seascape mapping and monitoring, and when

accompanied by high-quality in-situ data that match the

temporal window of the image composite can be used to

assess the trajectories of habitats of interest over time.

To map the seascape using these abundant data

streams, we exploit an end-to-end cloud-native semi-au-

tomated algorithmical framework – within the geospatial

platform of Google Earth Engine (Gorelick et al., 2017) –
which features the entire open-access image archive of

Sentinel-2. The power of cloud computing enables big

data processing for creating cloud-free composites, multi-

temporal analytics, and efficient machine-learning algo-

rithms calibrated by field data collected by partners on

the ground who observed the presence, status and depth

of coral reefs, seagrasses and the sandy/soft bottoms. We

use a geoprocessing framework designed for submerged

vegetation monitoring in temperate waters (Traganos

et al., 2018a, Traganos et al., 2018b; Traganos & Reinartz,

2017) and apply it to multiple benthic habitat types in

the tropical seascape. This provides the first automated,

consistent and expandable assessment for tropical coastal

resources in QNP to provide a pre-cyclone baseline. The

automated nature of the workflow provides valuable

opportunities for repeatable and automated monitoring,

which come at a crucial time of political instability and

insecurity in the area, resulting in limited accessibility and

lack of monitoring resources compounded by the Covid-

19 pandemic.

Materials and Methods

Study area

Following the independence of Mozambique in 1975,

more than five marine conservation areas have been

established by the national government. Among them, the

Quirimbas National Park (QNP), in the Province of Cabo

Delgado (Figure 1), Northern Mozambique, was created

with an intrinsic goal to value and protect the biodiversity

and ensure sustainable local livelihoods (MITUR, 2003).

In 2018, it was declared a UNESCO international Bio-

sphere Reserve due to its unique terrestrial and marine

fauna (UNESCO, 2018). An important aspect of this con-

servation area is that it follows a “bottom-up” approach,

since it was designed in part at the request of communi-

ties who, at the time, suffered from human–wildlife con-

flicts, competition for depleting natural resources, poverty

and declining ecosystem services and food sources upon

which they are dependent. The QNP is a protected area

with a significant local population of 166 000 people liv-

ing within its boundaries, with 40% in the transition and

buffer zone (Mucova et al., 2018). Being the third largest

conservation protected area in Mozambique with a signif-

icant ecological and economic value, it faces several chal-

lenges such as deforestation, poaching, illegal mining,

hunting, over-fishing and over-exploitation of resources.

All these combined pressures negatively impact biodiver-

sity and resource conservation, further affecting vulnera-

ble local communities and populations.

in situ data

Information collected from snorkel swims, boat and

drone surveys was used to create the training data for the

classification algorithms, and we were an aggregation of a

seascape mapping survey conducted by WWF-Mozam-

bique in September, 2018, and an octopus closure survey

conducted in April 2019 (Muaves, 2019). Due to the nat-

ure of the different surveys, and the characteristics of typ-

ical octopus closures areas (tidal flats), which are exposed

reef areas which trap sediment and sand and are increas-

ingly silted and highly reflective like sand are considered

as soft substrate. In both surveys, depth information was

recorded using a Fishfinders Lucky hand-held portable

depth finder to support the derivation of satellite-derived

relative bathymetry (SDB). The presence of three major

habitat types (hard substrate, vegetation and soft substrate

– examples shown in Figure 2) was identified, as well as
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the mixture of multiple habitats within an approximate

10 m x 10 m area was assessed either by snorkelers or

from the boat using a glass bottom bucket and water-

proof camera (GoPro inside a waterproof case) mounted

on a 50 cm stick. Habitat classes were identified a priori

and according to three major class types: Coral and hard-

bottom habitats (hard substrate) include any coral- or

rock-dominated surface, live or dead; Seagrass and sub-

merged vegetation (vegetation) comprise all surfaces with

at least 30% seagrass cover and underwater flowering

plants (Klemas, 2016). Soft and sandy substrates (soft

substrate) include all sandy and fine rubble surfaces and

may include turf macroalgae. Optically deep areas fall

into the deep-water class.

All information was collected in the field using a cus-

tomized Survey 123 for ArcGIS application, which automati-

cally includes geo-location from the Android phone or

tablet, collected in addition to position information recorded

at each location using a Garmin 64 s GPS. Drone surveys

were also conducted at six locations using a 3DR Solo drone

mounted with a GoPro 4 camera with a custom-fitted

straight 4 mm lens to avoid fish-eye effect. Surveys were

flown with 80% side overlap and 60% forward. Images were

geo-located to the drone GPS position obtained from flight

logs using GeoSetter 3.4.16 (images are shown here: https://

space-science.wwf.de/QNP_drone_survey).

Classification training data distributed for the three

habitat types, plus optically deep water (where insufficient

light is reflected from the seabed and subsequently mea-

sured from the satellite), were added by the digitization

of features detected in drone imagery, Google Earth and

Google Earth Engine using information from the in situ

data (shown in Figure 3) as well as older commercial

high-resolution imagery from QuickBird and IKONOS,

acquired in 2004 to enhance the distribution of points in

all bottom classes (Table 1).

Earth observation image processing

The entire Earth Observation (EO) analysis was per-

formed in the Google Earth Engine (GEE) cloud environ-

ment for the analysis of Earth Observation data (Gorelick

Figure 1. Quirimbas National Park is located

in Cabo Delgado Province, and is the

northernmost Marine Protected Area in

Mozambique, east Africa (inset). Coral reef

extent from UNEP-WCMC; Mangrove data

derived from Sentinel-2 by WWF-Germany.
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et al., 2017), using the workflow of Traganos et al.

(2018a, b) adapted to the QNP tropical landscape. Sentinel-

2 L1C data were filtered by acquisition dates that coincide

with the field surveys, prior to the 2019 cyclone season with

adequate cloud-free coverage. We selected all data collected

during the dry season months (May to December) for 2017

and 2018 with an overall cloud cover of less than 5%, result-

ing in a collection of 212 available images to create a best

pixel composite. This composite was created by masking

clouds using the Sentinel-2 QA60 bitmask, and then taking

the median values of the first quintile (20%) of best quality

pixels. Next, we performed sun glint removal applying the

method of Hedley et al., 2005, and automatic water masking

was conducted using the Otsu method (Donchyts et al.,

2016; Otsu, 1979). We derived a post-cyclone composite in

the same manner using imagery acquired between May 2019

and February 2020.

We derive a relative bathymetry and depth-invariant

index following the log-linear transformed linear model

(Lyzenga, 1978; Lyzenga, 1981) resulting in a relative esti-

mation of depths (m) and three-band reflectance image

derived from ratios which are independent of the water col-

umn (Traganos et al., 2018b). We quantitatively validated

the satellite-derived bathymetry models through the met-

rics of R2, Root Mean Square Error (RMSE) and Mean

Absolute Error (MAE) using all 683 available data points.

Figure 2. Representative photos of the

classification scheme. Top row: hard substrate;

middle row: vegetation and bottom row: soft

substrate.

ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 5

D. Poursanidis et al. Seascape Mapping with Sentinel-2 in the Cloud



As we lack an independent dataset for validation of the

depth retrieval, we use the satellite-derived depth as relative

depth layer to enhance the benthic classification.

To maximize the data available for benthic habitat clas-

sification, we added two additional bands to the data

stack, which are the first and second principle compo-

nents layers derived from the sun-glint corrected image.

A 3x3 boxcar convolution filter is applied to the stack

before classification to remove any artefacts or anomalies

by a low-pass smoothing. The bands used in the classifi-

cation included the coastal aerosol, blue, green and red

(bands 1, 2, 3 and 4 of S2 L1C), as well as the three

depth invariant bands, the relative bathymetry and two

principle components layers.

We derived bathymetric slope in degrees, rugosity and

bathymetric position index (BPI) using the NOAA Ben-

thic Terrain Modeler extension for ArcGIS (Walbridge

et al., 2018). The broad-scale bathymetric position was

calculated using an inner radius of 25 and an outer radius

of 50 pixels. We use these outputs to evaluate relative

depth and position of the benthic habitat classification

and to provide auxiliary data products for underwater

topography of the reef environment.

We applied three supervised classification methods to the

image stack: Random Forests (RF) machine learning algo-

rithm (Breiman, 2001), classification and regression tree

(CART; Breiman et al., 2017) and support vector machine

(SVM; Zhang et al., 2001). The resulting classified habitat

maps have four broad classes: hard substrate, submerged

vegetation, soft substrate and deep water. These were deter-

mined based on the characteristics of the seascape, the degree

of feasibility and efficiency of field data collection.

The training data were randomly split into 70% for

training and 30% for validation to assess training and

Figure 3. Distribution of field data collected

during the September 2018 expedition were

used to train the analysis of Earth Observation

data, which included habitat classification

identified from snorkel, boat (glassbottom

bucket) and drone surveys.

Table 1. QNP in situ and training data: field survey data from 2018,

2019 and the desktop-added points (image interpretation in conjunc-

tion with drone and underwater photos).

Class

2018 2019 Desktop points

Number % Number % Number %

Soft substrate 182 21% 446 67% 426 33%

Vegetation 518 60% 69 10% 490 38%

Hard Substrate 145 17% 140 21% 320 25%

Deep water 18 2% 10 2% 44 3%

Total points 863 665 1280
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classification accuracy. We evaluate the results of the

coastal habitat map by calculating overall (OA), producer

(PA) and user accuracy (UA) of each class and estimate

habitat area based on weight-adjusted accuracies accord-

ing to Olofsson et al. (2013).

Using the same training dataset we apply a spectral

unmixing algorithm (Adams, Smith, & Johnson, 1986)

provided by the .unmix function in Google Earth Engine

applied to the deglinted Sentinel-2 image. We use a ran-

dom sample (70%) of the “pure” (single, dominant habi-

tat) endmembers identified selected at various depths. We

then interpret a continuous measure of % contribution of

the four habitat classes, essentially providing sub-pixel

estimates of habitats. We apply the same unmixing

approach to the post-cyclone Sentinel-2 deglinted com-

posite and assess the per cent change in each fraction. We

use the remaining data of mixed and pure classes to vali-

date the presence of multiple habitats at one location.

Results

EO Processing

The outputs from EO processing resulted in composites

with cloud and glint removal, satellite-derived relative

bathymetry (SDB) and associated derivatives for water

column correction, followed by the habitat classifications.

The raw multi-temporal image mosaic, the de-glinted and

water column corrected outputs are shown in Figure 4.

Due to the nature of the deglinting algorithm and the

multi-temporal analytics, surface artefacts and waves are

removed in the deglinted image, while the water column

corrected image shows coral reefs and seagrass habitats

with similar reflectance independent of their depth.

Satellite-derived relative depth was estimated up to

15 m for optically clear waters (Figure 5), with MAE of

1.21 m, RMSE of 1.61 m and an R2 of 0.62. This output

shows the entire potential shallow reef shelf throughout

the protected area, and around the atolls. The lagoon

bathymetry was also retrieved, showing underwater chan-

nels and coastal features. Additional derivatives from

bathymetry include slope, rugosity and BPI which show

the areas of relatively homogenous flat surfaces in the

lagoons compared to those with more complex topogra-

phy (Figure 5). The BPI discerns shallow reef flats from

slopes and deeper flat zones typical for the lagoon areas

around the islands and along the mainland shore.

Benthic Habitats

Training accuracy evaluating the random sample of the

training dataset and the validation accuracy using an

independent sample of training points are shown in

Table 2. Support vector machine had a training accuracy

of 100% as expected for a machine learning approach

which might be over-fitted. It does, however, produce the

lowest validation accuracy. CART has the next highest

training accuracy and produces a map with slightly more

speckly in the seagrass habitat. Random forest has the

highest validation accuracy and was selected for the final

classification.

The QNP classification map developed using random

forest classification has an overall accuracy of 84.6% (Fig-

ure 6, Table 3). Coral is the least accurate class, being

most often confused with soft substrate and to a lesser

extent vegetation. Soft substrate had the highest producer

accuracy meaning low omission errors, while vegetation

has the highest user accuracy. In comparison, the SVM

classification greatly underestimates hard substrates, and

overestimates soft substrates which showed a 50% user

and producer accuracy, which is especially low consider-

ing the small number of overall classes. The CART classi-

fication showed highest user accuracies for soft substrates,

and all producer accuracies between 70 and 80%, how-

ever, the overall accuracy was under 77% and lower than

random forests, and deep water is overestimated com-

pared to the other classifications. Based on the accuracy

assessment of the Random Forest classifier, except for

optically deep waters, all other three classes are neither

overestimated nor underestimated following their bal-

anced producer and user accuracies. Here, vegetation is

the most dominant habitat, followed by soft substrate as

shown in Table 4. The mapped habitats have unique

depth ranges and topographic position (Table 5). Soft

substrate is found generally on shallower, flatter,

smoother underwater surfaces in comparison to the other

habitats, while seagrass shows highest rugosity and hard

bottom generally at deeper depths.

The spectral unmixing results are shown in Figure 7,

with three bands representing the unique classes as a pro-

portion from 0 to 1, where the sum of all bands in one

pixel is 1. The zoomed areas show the presence of mixed

habitats. We note sand mixed with seagrass on the out-

ward edges of the atolls and some areas of seagrass and

corals in the southern half of the protected area. Given

the difficulties in acquiring detailed quantitative data on

sub-pixel habitat presence, we use the multiple habitat

types identified in the field and map these onto the spec-

trally unmixed image (Figure 8). The presence of vegeta-

tion and soft substrate in the field is generally represented

in the mixed image, however, the observed presence of

hard substrate does not appear to coincide as well with

the unmixed fractions. The cluster of observed areas

which were identified in the field as only soft substrate in

fact have a significant vegetation fraction, which is

expected as these are often mixed, with seagrass found on
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sandy substrates. We recommend better validation data

tailored to assessing mixed habitats and their proportions,

such as high-resolution image classifications. We use the

pre- and post-unmixing fractions to demonstrate a

method to assess change due to the severe cyclone season

(Figure 9). We identify primarily major decreases in coral

fractions in Matemo, which are accompanied by increases

in soft substrate, which could be indicative of sedimenta-

tion and correspond to local reports of large-scale coral

cover loss but cannot be directly verified.

Discussion

Well-informed and effective conservation management in

the coastal zone requires an up-to-date state of knowledge

and comprehensive data concerning the resources to be

managed. In particular, the coastal marine seascape, its

distribution of major habitats and underwater morphol-

ogy are all absolute prerequisites to conservation activities

for these assemblages, their context and distribution, not

only presence or absence (Purkis et al., 2019). Accurate

and reliable spatial data are required for active and effi-

cient management of marine protected areas, and more

recently applied to restoration activities. The baseline

requirements to manage coastal ecosystems include the

typology and structure of the seascape environment,

dynamics through time, its state of health and/or conser-

vation status and a suitable monitoring system to support

adaptive management or interventions as needed. In

QNP, there has been relatively little available spatial data

for marine resource management, although it is a highly

valuable and resilient reef system of global importance

Figure 4. Cloud-native Sentinel-2 pre-processing produced a multi-temporal image composite (left), which was corrected for sunglint (middle);

and water column (right). QNP boundary shown in blue.
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(Beyer et al., 2018). These data are fundamental to shap-

ing policies and decision-making, notably related to fish-

eries management and zoning and are now more critical

than ever, particularly in countries facing challenges to

sustainable management of coastal resources in the face

of climate change and instabilities (Diop et al., 2012) and

the long-term human impacts that have drastically altered

coral reef systems and associated biodiversity until today

(Mcclenachan et al., 2017). Our herein presented benthic

habitat mapping effort assesses over 100 000 ha of under-

water shallow habitats classified into soft substrates, coral

and hardbottom and seagrasses with over 80% accuracy.

Figure 5. top left: Satellite-derived relative

depth (up to 15 m); top right: slope in

degrees; bottom left: rugosity; bottom right:

broad scale bathymetric position index (BPI).
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The outputs are very useful for efficient and effective fish-

eries management and support of local livelihoods and

programs such as temporal closures which are important

management tools for coral reef ecosystems (Friedlander,

2015).

An effective baseline study should underlie any estab-

lishment of MPAs and include the mapping and quantifi-

cation of the spatio-temporal distribution of the habitats

to conserve using replicable methods for status monitor-

ing. As such, remote sensing plays an increasingly impor-

tant role in the monitoring and management of coastal

seascape, including the mapping and monitoring of coral

reefs, seagrass meadows and other shallow aquatic envi-

ronments (Foo & Asner, 2019). Ongoing advances in the

development of satellite imagery, cloud computing,

machine learning and associated technologies are continu-

ing to improve our ability to accurately derive informa-

tion on the seascape composition (habitats and species),

water properties (nutrients and sedimentation) and water

depth, which are important for assessing the ecosystem

health of a largely shallow-water MPA. However, given

the physical complexity and inherent variability of the

aquatic environment, most of the remote-sensing models

used to address these challenges require localized input

parameters to be effective and are thereby limited in geo-

graphic scope.

Although there have been considerable efforts to assess

biodiversity in East Africa (Richmond, 2000), QNP has

lacked quality, detailed coastal seascape maps since its

establishment. Available data are not entirely able to meet

the requirements of protected area managers to ensure

sustainable fisheries and tourism activities. Our habitat

classification, bathymetry and underwater terrain maps

indicate a diverse distribution of habitats distributed

throughout the seascape, with extensive seagrass beds

located at river mouths and bordering mangroves in rela-

tively flat, shallow near shore lagoons. Sand and soft sub-

strates dominate the shallower zones near the atolls, with

Table 2. Training and validation accuracies for the three classification

methods.

RF CART SVM

Training accuracy 98.6% 96.9% 100%

Validation Accuracy 82.2% 76.9% 53.1%

Figure 6. Classification outputs from three different classifiers: RF (left), CART (middle), SVM (right).
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reef lining the outward edges of the atolls, extending to

the lagoon areas in the northern and southern parts of

the park. This information provides the first holistic view

of benthic cover that protected area managers are tasked

to conserve for the future. Knowing where habitats exist,

their relative depth, structure and pattern are the first

step in assessing coral reef resilience, exposure to extreme

events, accessibility by humans and potential management

or restoration strategies to avoid ecosystem collapse

(Bland et al., 2017).

The relative bathymetry dataset shows underwater

topography in far greater detail than best available infor-

mation in nautical maps or charts which are out of date

and limited in resolution in shallow waters. The underwa-

ter features, and bathymetric structure, notably rugosity

are critical drivers for fish communities and biodiversity

(Dustan, Doherty, & Pardede, 2013; Wedding et al.,

2019). These data also directly enhance the benthic habi-

tat mapping classification as certain habitats and

substrates tend to occur in unique underwater zones and

knowing relative depth helps account for effects of a vary-

ing water column (Eugenio, Marcello, & Martin, 2015).

These data also contribute to the baseline information

requirements for designating potential fishing areas, tem-

poral closures, use zones, but also can be utilized to eval-

uate major changes in depths due to cyclones or storm

events which might cause extensive sedimentation or

changes in the seafloor.

To support these conservation efforts, we opted to use

four major discernible and ecosystem important classes for

our approach defined primarily by their substrate, which is

an important determinant of the ecology of the reef ecosys-

tem as these habitats associate with certain functional

groups of species or life cycles (Osuka et al., 2018); while

the changes between these classes can be an indicator of

degradation (Bellwood et al., 2004). A simple classification

scheme was selected to provide unambiguous classes whose

presence can be easily identified in situ, while maximizing

potential accuracy from a medium resolution sensor

(Hochberg & Atkinson, 2003). Despite the accuracy values

being within the generally accepted range for management

activities, more typologies including a macroalgae class

could potentially support a greater number of management

activities such as the detection of bleaching or dead coral,

or use macroalgae cover as an indicator of reef health (Roff

& Mumby, 2012). Classifications define homogenous

classes, however, we found that this is not often the case

in situ, and within the 10-m Sentinel-2 pixel size, there is

in fact a high likelihood of finding mixed coral and rubble,

vegetation and sandy seabeds. Our discrete classification

results owe to the fact that we could produce a clear satel-

lite image composite with minimal water quality and natu-

ral artefacts, and a reference dataset with an adequate

horizontal and vertical distribution of habitat classes. The

Sentinel-2 dataset also allowed us to employ a spectral

unmixing algorithm to define sub-pixel benthic habitats,

also enabled by clear water image composition, although

this approach is more often applied to hyperspectral ima-

gery (Hedley et al., 2004) and might benefit from addi-

tional non-linear techniques to address different water

Table 3. Accuracy assessment for Random Forest Classification.

Validation data
Producer Accuracy

(%)Soft Substrate Vegetation Hard Substrate Deep Water Total Points

Map Data Soft Substrate 98 6 9 1 114 86%

Vegetation 9 127 14 2 152 83.5%

Hard Substrate 9 13 62 0 84 73.8%

Deep Water 0 1 0 9 10 90%

Total Points 116 147 85 12 350

User Accuracy (%) 84.5% 86.4% 72.9% 75% overall: 84.6%

Table 4. Final area calculations and per cent composition for QNP

based on the Random Forest classifier, and applying area-weighted

accuracy.

Class Area (ha) Area (%)

Soft substrate 24 720 � 1183 23.4%

Vegetation 29 073 � 1278 27.5%

Hard Substrate 19 413 � 1319 18.3%

Deep water 32 610 � 346 30.8%

Table 5. Benthic habitat types with varying bathymetric indicators.

Class

Mean

relative

depth

(m)

Mean

Slope

(degrees)

Mean

Baythymetric

Position

(unitless)

Mean

Rugosity

index

(unitless)

Soft substrate 4.18 0.93 �17.52 1775

Seagrass 5.2 1.22 6.31 2293

Coral/Hard Bottom 6.99 1.08 �10.76 2010

Deep water 12.85 1.32 26.52 74179
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depths (Hedley & Mumby, 2003). There is a great value in

fuzzy classifications, to accompany thematic maps, provid-

ing additional detail for mixed and heterogeneous environ-

ments identify areas which potentially support unique fish

assemblages and require additional assessments – this is

even more important at spatial resolutions which are larger

than the fine-scale habitats of interest for mapping and

management.

Northern Mozambique is among the target areas of other

mapping efforts, notably the Allen Coral Atlas project (Lyons

et al., 2020; https://allenatlasproject.org) aiming to map the

global extent of reefs using Google Earth Engine and the

PlanetScope Cubesat satellites, which provide daily imagery

with a 3.7 m pixel size. The higher spatial and temporal res-

olution provided by the Coral Atlas is certainly able to dis-

cern habitats in more detail in comparison to Sentinel-2,

and also has three additional classes, but has the disadvan-

tage of a higher financial cost, the time and effort to pre-pro-

cess large volumes of data prior to downstream data

analysis, and the very low signal-to-noise ratios (Li et al.,

2019). The geomorphological datasets, associated satellite

imagery and benthic maps are, however, a great contribution

to calibrating and improving a Sentinel-2–based workflow

by refining habitat class locations. The 5-day revisit and

stable spectral parameters can enable new datasets derived

from this great effort over time, including relative bathyme-

try produced at finer time intervals or to respond directly to

local needs when they arise.

Given the increasing availability of free data from the

Copernicus Sentinel-2 constellation, we see a great poten-

tial in consistent, long-term monitoring. The benefits of

frequent observations and higher resolution than Landsat

allow the creation of optimum surface and water column–
corrected reflectance image composites suitable for opti-

cally shallow coastal aquatic remote sensing for desired

time frames, removing obstacles such as clouds, cloud

shadows, turbid waters and sunglint. The use of machine

learning algorithms and cloud processing allow for a nearly

automated workflow which improves with new calibrations

via reference data. The automated aspect of the process

means that repeated assessments may be performed over

different temporal scales providing results as consistently as

possible with minimal user interference. While the classifi-

cation workflow shown here can be used for monitoring

Figure 7. Spectral umixing of deglinted image

using pure endmembers to detect pixel level

mixing of the 3 major habitats in red, green

and blue image channels. An absence of all

three habitat types is shown in black,

indicating optically deep areas.
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habitat classes, we have also presented a potential approach

to detect sub-pixel changes and trends in mixed habitats

using spectral unmixing, which can potentially assess dis-

turbances from cyclone Kenneth which delivered a direct

hit to Quirimbas in April of 2019 (Figure 9). Our baseline

dataset was developed for a crucial time period before a sig-

nificant cyclone season in 2019, which was later com-

pounded by recent political instability and insecurity in the

area, and the covid-19 pandemic which has greatly reduced

access and eliminated most of the protected area enforce-

ment capabilities. Preliminary reports have indicated major

damage from the cyclones, and simultaneously little capac-

ity on the ground for collection of additional data in 2020.

Given the highly automated nature of our cloud-native

geoprocessing framework and the stability, consistency of

the Sentinel-2 sensors, we have several options to assess

changes, either by evaluating major changes in benthic

habitats either via the random forest supervised or by

changes in the sub-pixel proportions of the spectral

unmixed product.

Cloud-based infrastructures and frameworks for regio-

nal- or continental-scale mapping have demonstrated

powerful impact for conservation in the terrestrial

realm (Hansen et al., 2013) but recent efforts have been

targeting the coastal zone (Lyons et al., 2020; Murray

et al., 2012). Disk space and bandwidth are no longer

barriers in the quest for large-scale mapping efforts,

allowing scientists to tailor better methods and apply

computation-heavy algorithms such as machine learning.

The designed and adapted cloud-native workflow can

be rapidly updated by changing the temporal window

to update the coastal seascape maps of habitat and

bathymetry, ideally calibrated and validated with

updated and suitable field data. The use of a cloud

computing infrastructure like the Google Earth Engine,

and the ability to make the developed code available to

local scientists and coding novices is an important step

towards the simplification of the use of such tools for

the management of an MPA, the creation of baseline

maps for conservation prioritization and zonation of

the desired area, and the detection of changes after nat-

ural hazards. With this effort we aim to implement

new baselines for higher temporal resolution monitoring

in the long term.

The significant advances of cloud computing, public

satellite data archives and automated artificial intelligence

frameworks have given birth to efforts pertaining to the

mapping and monitoring of the entire coastal seascape

ecosystem like the present one, the aforementioned Allen

Coral Atlas project, tidal flat monitoring (Murray et al.

2019), the German Aerospace Center funded Global Sea-

grass Watch project, and Global Mangrove Watch (Bunt-

ing et al., 2018). Leveraging cloud-native geoprocessing

frameworks for regional-to-continental to global-scale

mapping, all of these efforts are demonstrating their value

and impact towards effective coastal seascape inventories

which will highlight priority areas of resilience or sensitiv-

ity for protection, restoration and conservation, enhanc-

ing the capacity of countries to measure and monitor

their natural resources. As global data become more avail-

able, it should however, not deter from efforts to provide

locally validated and calibrated datasets.

This seascape mapping effort contributes to a larger

overall goal of mapping the entire coastal ecosystem in

the region and its essential components, which include

corals, seagrasses but also coastal mangroves. When

Figure 8. Multiple habitat observations in the

field were mapped to the spectrally unmixed

image.
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present together, these elements have been shown to pro-

vide better coastal protection and resilience to the impacts

of climate change (Guannel et al., 2016). A national man-

grove mapping effort also using Sentinel-2 (Shapiro,

2018) has shown that overall mangroves are increasing in

Quirimbas, which lends additional support to this rela-

tively intact and important natural resource providing sig-

nificant ecosystem service benefits in the face of climate

change, and warrants long-term protection (Beyer et al.,

2018).

The availability of these kinds of seascape datasets can

support sustainable development and international financ-

ing mechanisms. The East Africa Seascape is still relatively

unknown compared to other large reef areas of the world,

with few coordinated attempts to create datasets at

national scales in support of conservation, protection, cli-

mate change adaptation and Nationally Determined Con-

tributions (NDCs); which are at the heart of the Paris

Agreement and long-term climate goals. As “blue carbon”

from seagrasses is increasingly recognized for potential

carbon stock and sequestration (Fourqurean et al., 2012;

United Nations Environment Programme, 2020) countries

can adapt strategies to reduce national emissions through

coastal management and restoration. The International

Coral Reef Initiative (ICRI) recently endorsed the inclu-

sion of coral reefs and related ecosystems within the CBD

post-2020 Global Biodiversity Framework, of which a

number of indicators for priority development will be

derived from remote sensing, and the most efficient

approach is likely to use Copernicus data and cloud com-

puting (ICRI, 2020).

Regarding the near future of our efforts, we aim to scale

up the geoprocessing framework and the related observa-

tions to the regional extent of four East African countries

(Mozambique, Tanzania, Kenya, Madagascar) to compre-

hensively map the coastal seascape including seagrasses,

corals and mangroves and potentially include additional

benthic classes to discern macroalgae from other vegetation,

when training data are available. Such scalability can

empower the measurement and accountability of blue

Figure 9. Change in habitat fractions from pre and post cyclone. Left: hard substrate; center: vegetation; right: soft substrate. Areas of no

change (0%) masked in grey.
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carbon inventories which will in turn support conservation

and national climate change policy agendas for the four

concerned countries; and could potentially serve as good

practices to more countries, which feature these blue car-

bon habitats, for data-driven and effective ecosystem-based

adaptation to climate change, both nationally and globally.
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