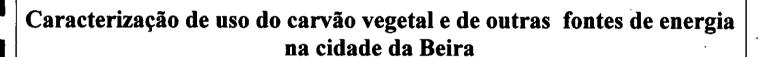


Eng. 7-13


UNIVERSIDADE EDUARDO MONDLANE

FM. FB

Departamento de engenharia Florestal

Projecto Final

Supervisor: Prof. Doutor Egas, Andrade Fernando

Autor: Tuzine, Mário Sebastião

Maputo, Julho de 2005

Dedicatória

À memória do meu pai Sebastião Tuzine

À minha mãe Maria Tovela

Agradecimentos

À Deus pela força e pelo encanto com o qual me guiou a fazer o trabalho

Ao mentor desta obra, meu supervisor, Prof. Doutor Andrade Egas pela plena dedicação, confiança, e paciência demonstrada durante a pesquisa e elaboração do relatório final.

Aos meus colegas, António, Maduela, Mudaca, Chabane, Ferro, Cadre, Nakala, Engª Chalufo, Engª Michonga, Engª Puná, Engª Nube, Manjante, Engº Ofiço, Langa, Zunguene, Engº Engº Chirrute, Guedes, Engº Namburete, Engº Gildo e que ninguém se considere esquecido (momento de stress)

Aos técnicos Langa, Chiconela, Ajaba, Paulo, Cossa, Pires, Alexandrina Macamo António, à Eng^a Tatianae ao Eng^o Mário

Aos docentes Dr. Paulo Falcão, Prof. Doutor Romana Bandeira, Prof. Doutor Almeida Sitoe.

A meus irmãos Milagre Tuzine, Francisco Mugabe, Telma David, Eugenia Cumbane, Alfredo Boane e Adélia Boane, Inocêncio, Felício, Silvano, Fernando, Isabel, António, Leonardo, aos sacerdote Jerónimo Cuambe e Belarmino Matsimbe e ao ancião Pedro Matimele

O agradecimento especial com carinho e veneração vai para António Sebastião Tuzine e Estela Isabel Moreno pela paciência, confiança e esforço que depositaram na minha formação e na concretização dum sonho.

À UICN pelo financiamento do trabalho.

Índice

Conteúdo	Páginas
Dedicatória	i
Agradecimentos	ii
Lista de tabelas	iii
Lista de figuras	iv
Lista de anexos	v .
Abreviaturas e símbolos	vi
I. INTRODUÇÃO	1
I.1. Consumo de combustíveis lenhosos para fins domésticos	1
I.2. Definição do problema	2
I.3. Objectivos do trabalho	2
II. REVISÃO BIBLIOGRÁFICA	3
II.1. Conceito de combustível	3
II.2. Consumo de combustíveis lenhosos	4
II.2.1 Consumo de combustíveis lenhosos em África	4
II.2.2 Consumo de combustíveis lenhosos em Moçambique	5
II.3. Factores que influenciam o consumo de diferentes fontes de energia	6
II.4. Impacto ambiental do uso das diferentes fontes de energia	8
III. METODOLOGIA	10
III.1. Recolha de dados	10
III.1.1. Área de estudo	10
III.1.2. Recolha de dados	10
III.1.3. Técnicas de pesquisa	11
III.2. Processamento de dados	11
III.2.1. Determinação de consumo e custos de energia doméstica	12
III.2.2. Análise de consumo e custo das diferentes fontes de energia	13
III.2.2.1. Variáveis independentes ligadas a aspectos sócio-económicos	13
III.2.2.2. Variáveis ligadas a aspectos sociais	14
IV. RESULTADOS E DISCUSSÃO	15
IV.1. Caracterização geral dos agregados familiares da cidade da Beira	15
IV.1.1 Parâmetros ligados a aspectos sócio-económicos	15
IV.1.2. Parâmetros ligados a aspectos sociais	16
IV.2. Caracterização do uso de energia doméstica	17
IV.2.1. Formas de consumo de fontes de energia	17
IV.3. Factores que influenciam o consumo e custos de energia	20
IV.3.1.1. Consumo e custo de carvão a saco	20
IV.3.1.2. Consumo e custo de carvão a montinhos	22
IV 3.1.3 Consumo e custo de Gás	23

IV.3.2. Fonte de energia Vs Tipo de refeição	24
IV.4. Determinação do consumo e custos de energia nos agregados familiares	25
IV.4.1. Consumo	25
IV.4.2. Custo	26
IV.4.3. Comparação dos custos das fontes de energia	28
IV.5. Limitações de estudo	29
V. CONCLUSÕES E RECOMENDAÇÕES	30
V.1. Conclusões	30
V.2 Recomendações	32
VI. REFERÊNCIAS BIBLIOGRÁFICAS	33

.

.

•

.

Lista de tabelas

Tabela 1 - Consumo de combustíveis lenhosos em África e na cidade de Maputo	5
Tabela 2 - Diferentes combinações no uso des combustíveis para a cidade de Maputo	6
Tabela 3 - Razões de disponibilidade do produto e capacidade financeira	7
Tabela 4 - Emissões de NO ₂ oriundas de combustíveis	9
Tabela 5 - Emissões de CO ₂ e SO2	9
Tabela 6- Divisão da amostra	11
Tabela 7 - Número de agregados familiares inquiridos por categoria de bairro	15
Tabela 8 - Número de agregados familiares inquiridos por categoria de casas	16
Tabela 9 - Sexo do chefe de agregado	16
Tabela 10 - Consumo de fontes puras	19
Tabela 11 - Combinações de diferentes fontes utilizadas na cidade da Beira	19
Tabela 12 - Factores que afectam o consumo de carvão a saco	20
Tabela 13 - Factores que afectam o consumo e custo de carvão a montinho	22
Tabela 14 - Factores que afectam o consumo de gás de iluminação	23
Tabela 15 - Tipo de energia usada na confeição de refeições X tipo de refeições	23
Tabela 16 - Consumo de carvão a saco	25
Tabela 17 - Consumo de carvão a montinho	25
Tabela 18. Consumo médio de gás de iluminação	25
Tabela 19 - Variação dos custos de consumo de energia em função de diferentes variáveis	26
Tabela 20 - Comparação dos custos de consumo doméstico de carvão e gás	26

Lista de figuras

Figura 1 - Tamanho de agregados familiares	17
Figura 2 - Formas de consumo das fontes de energia	18
Figura 3 - Consumo de fontes puras	.18

Lista de anexos

- Anexo 1 Mapa da área de estudo (cidade de Beira)
- Anexo 2 Questionário para caracterização do consumo e custo de combustíveis lenhosos e outras fontes de energia na cidade de Beira
- Anexo 3 Regressões de factores que influem no consumo de carvão a saco, a montinho e gás.
- Anexo 4 Regressões de factores que influem nos custos de carvão a saco, a montinho e gás.
- Anexo 5 Tipo de energia usada na confeição de refeições Vs tipo de refeições
- Anexo 6 Quantidades e custos de consumo de carvão a saco, montinho e gás

Abreviaturas e símbolos

% Percentagem

ANOVA - Análise de variância

DNFB - Direcção Nacional de Florestas e Fauna Bravia

DEF - Departamento de Engenharia Florestal

FAEF - Faculdade de Agronomia e Engenharia Florestal

INE - Instituto Nacional de Estatística

LPG - Combustível liquefeito

m³ - Metro cúbico

Mt - Meticais (Moeda de República de Moçambique)

NO_X - Óxidos de Azoto (Nitrogénio)

PUA - Posto Urbano Administrativo

UEM - Universidade Eduardo Mondlane

I. INTRODUÇÃO

I.1. Consumo de combustíveis lenhosos para fins domésticos

Nos países em vias de desenvolvimento, os combustíveis lenhosos (lenha e carvão) constituem a principal fonte de energia doméstica para a confecção de alimentos. Estima-se que estes combustíveis sejam utilizados por cerca de 2 biliões de habitantes destes países, onde a madeira é a mais importante fonte de energia, e, em muitos casos, a única disponível. Mais de 80% da madeira consumida no terceiro mundo é utilizada como lenha. Nos trópicos, a utilização da lenha supera, em mais de 5 vezes, a madeira industrial. Em média, a lenha fornece 85% do abastecimento total de energia consumida nas zonas rurais (Macuacua, 1997), onde se estima que 86% da madeira consumida por ano é utilizada como combustível para o consumo directo (lenha) ou depois de transformada em carvão.

Moçambique, no contexto mundial, não é excepção, sobretudo nas últimas duas décadas, com a degradação do nível de vida das populações, fundamentalmente devido a efeitos da guerra e da seca que assola algumas áreas do país (Macuacua, 1997). Mais de 80% da população de Moçambique vive em zonas rurais ou periurbanas, onde as suas necessidades de energia são inteiramente satisfeitas à base de lenha e carvão, enquanto uma grande parte dos alimentos, produtos medicinais, materiais de construção e utensílios domésticos é também obtida das florestas ou de árvores que são propositadamente preservadas em campos agrícolas para o efeito (http://webserver.map.gov.mz/dnffb/flores.html, 2003-05-15).

Os combustíveis lenhosos têm sido utilizados tanto por famílias rurais como urbanas. As necessidades cada vez mais crescentes do seu uso aceleram o desmatamento, provocando, deste modo, maiores porções do solo descoberto, o que pode criar graves problemas de erosão (Chaposa, 2000). O baixo nível sócio-económico da maior parte das comunidades rurais diminui as possibilidades de disseminação de fontes energéticas alternativas aos recursos florestais. Mesmo no meio urbano, e nas vilas, onde as possibilidades de utilização de energia eléctrica são (em principio) mais elevadas, o consumo de combustível lenhoso é considerável, devido aos rendimentos baixos e inconstantes da maioria dos habitantes (Brouwer e Falcão, 2001).

A situação da pobreza da maioria das famílias moçambicanas faz com que estas recorram, sistematicamente, à lenha e ao carvão para a sua subsistência. Como resultado de forte dependência da biomassa lenhosa, como fonte principal de energia, em Moçambique cerca de 70-80% dos agregados familiares nas zonas urbanas usam o carvão vegetal como combustível para a cozinha (Mirasse, 2004, citando Williams, 1993). Esta situação provoca a devastação de grandes áreas florestais à volta das grandes cidades; o corte de árvores para a produção de carvão e lenha não toma em consideração as recomendações técnicas do maneio florestal e de silvicultura.

Os dados recolhidos no terreno, e a análise que se lhes fez, mostram a necessidade de alterar o quadro actual do consumo de combustíveis lenhosos, sobretudo nas grandes cidades, de modo a contribuir para o uso sustentável dos recursos florestais.

I.2. Definição do problema

A definição de estratégias com vista a alterar o quadro actual do consumo de combustíveis lenhosos passa pela necessidade de caracterizar a situação actual de uso e custos das diferentes fontes de energia doméstica.

Alguns estudos nesta matéria já foram levados a acabo em Moçambique tanto por Pereira (2001), como por Brouwer & Falcão (2001). No entanto, trata-se de estudos que se circunscrevem à caracterização de combustíveis em termos quantitativos (isto é, quantidades consumidas, proporções de consumo de cada fonte) e não fazem referência aos custos de consumo de cada fonte. Por outro lado, os estudos, em referência, limitam-se apenas à cidade e província de Maputo, e não incluem outros centros urbanos de grande consumo de combustíveis lenhosos como a cidade da Beira.

I.3. Objectivos do trabalho

- > Caracterizar o uso de fontes de energia para cozinha na cidade da Beira;
- > Determinar os factores que influenciam o consumo e os custos de energia para cozinha;
- > Determinar o consumo e custos de diferentes fontes de energia; e
- Comparar os custos das diferentes fontes de energia.

II. REVISÃO BIBLIOGRÁFICA

II.1. Conceito de combustível

Define-se como combustível tudo o que arde ou serve para arder. Trata-se de substância cindível que, numa pilha atómica, pode originar uma reacção em cadeia, isto é, uma reacção que se desenvolve por si mesmo, porque os agentes necessários à reacção são produzidos pela própria reacção (Matos,1978). O combustível, de acordo com a sua natureza e propriedades, pode ser lenhoso ou não lenhoso.

Combustível lenhoso

Entende-se por combustível lenhoso a madeira e o material celulósico de troncos, ramos e outras partes de árvores e arbustos que tenham, ou não, sofrido combustão. O combustível lenhoso serve não só para o uso doméstico mas também para a indústria (Cruz, 1990 citado por Magane, 1998), podendo ser definido, igualmente, como aquele cujo consumo envolve a biomassa lenhosa de que fazem parte a lenha e o carvão, e onde:

Carvão

É o resíduo sólido que se obtêm quando se carboniza a madeira e que se pirolisa em condições controladas, num espaço fechado, como é o forno de carvão. Faz-se o controlo da entrada do ar, durante o processo de pirólise ou carbonização para que a madeira não se queime até se tornar cinza (como sucede com o fogão convencional); mas que se decomponha quimicamente para formar o carvão vegetal, em cujos fornos tradicionais, se obtêm um rendimento médio estimado de 10% (FAO, 1983 citado por Macuacua, 1997). Matos (1978) define o carvão vegetal como sendo pedaço de material vegetal mal queimado, obtido por meio de combustão incompleta (viva ou lenta) ou combustível de cor castanha a negra, formada pela decomposição parcial de material vegetal, ao abrigo do ar, e, no geral, sob acção da pressão e do calor.

Lenha

Nome genérico da madeira empregada para alimentar a combustão; por exemplo, madeira e pau. É a biomassa extraída directamente das espécies florestais, podendo ser ramos, caules, raízes, com o propósito de poder usá-la como combustível; constitui, portanto, o consumo em bruto destas partes (Matos, 1978).

Combustível não lenhoso

É aquele cujo consumo não envolve a biomassa lenhosa, como são os casos de petróleo, gás, electricidade, entre outros.

Petróleo

Líquido obtido por destilação do petróleo natural, empregado como combustível em fogareiros e em candeeiros (Matos, 1978).

Gás

Substância que ocupa, de maneira contínua, todo o espaço em que está colocada, por maior ou menor que seja esse orifício de saída, se a temperatura se mantiver constante (Matos, 1978).

Electricidade

É uma forma de energia caracterizada pela facilidade de transformação em outras formas, como calor, luz (Matos, 1978).

II.2. Consumo de combustíveis lenhosos

II.2.1 Consumo de combustíveis lenhosos em África

Os recursos florestais (lenha e carvão) constituem o combustível dominante para a maior parte das famílias rurais e urbanas em África. Em 1983, a população de África era estimada em cerca de 450 milhões de habitantes os quais usavam um volume de combustível lenhoso, por ano, calculado em 300 milhões de m³. Isto representava mais de 70% de energia consumida no Continente (FAO, 1983 citado por Langa, 2002).

Langa (2002), citando Amous (s/d), afirma que o consumo de combustíveis lenhosos em África atingiu, em 1994, 623 milhões de m³; claro indicador de que África representava o consumo per

capita mais elevado (0,89 m³/capita/ano) de todos os continentes, remetendo Ásia para 0,3 m³/capita/ano.

II.2.2 Consumo de combustíveis lenhosos em Moçambique

Em 1993, a procura de combustível lenhoso, em Moçambique, era de cerca de 18 milhões de m³; havendo um défice em combustível lenhoso em algumas zonas, sobretudo na província de Maputo, onde as formações florestais, aliadas às condições edafo-climáticas, não oferecem uso sustentável para o futuro (Mirasse, 2004 citando Williams, 1993)

Na cidade de Maputo, os combustíveis lenhosos e_não lenhosos são usados para o consumo doméstico e não doméstico, dependendo do nível sócio-económico do agregado familiar e principalmente a disponibilidade do combustível. A electricidade é muito usada para a iluminação e alimentação de equipamentos, embora seja também utilizada nalgumas padarias. O petróleo e diesel são basicamente usados para a maquinaria. Na cidade de Maputo, o gás, lenha e carvão são usados, na sua maior parte, na cozinha (Brouwer e Falcão, 2001), como o ilustra a tabela 1.

Tabela 1: Consumo de combustíveis lenhosos em África e na cidade de Maputo

Autor	Região	Consumo per capita m ³ /ano	Consumo total anual m ³
Amous	Africa	0.89	623 000 000
FAO	Africa	1	450 000 000
Mansur & Karlberg	C. Maputo	0.67	360 000
Wiliams	C. Maputo	1.37	1 160 000
Fernades elt all	C. Maputo	1.32	775 450
Brouwer & Falcão	C.Maputo	1	1 000 000

Fonte: adaptado de Langa (2002)

Para o caso específico da cidade de Maputo, pessoas com rendimentos financeiros superiores, geralmente, usam combustível não lenhoso, recorrendo poucas vezes ao carvão e à lenha. Os combustíveis lenhosos são utilizados pelas famílias de menor poder económico. É de notar igualmente que os agregados familiares recorrem, com frequência, a mais do que um tipo de combustível, fazendo combinação entre os lenhosos e não lenhosos (Brouwer e Falcão, 2001). A título de exemplo, na cidade de Maputo, a combinação mais frequente envolve o carvão e petróleo, pois das 240 famílias entrevistadas, no estudo de Brouwer e Falcão (2001), 44

afirmaram positivamente usar esta combinação, perfazendo cerca de 18,3 %. Na amostra, apenas 59 agregados familiares não usam combustíveis lenhosos (Tabela 2).

Tabela 2: Diferentes combinações no uso dos combustíveis para a cidade de Maputo

Carvão	Lenha	Gás	Petróleo	Electricidade	N	%
X					28	11,7
X				X	20	8,3
X		X			23	9,6
X		X		X	14	5,8
X		X	X		2	0,8
X		X	X	X	2	0,8
X	X				16	6,7
X	X			X	3	1,3
X	X	X		X	1	0,4
X	X		X		15	6,3
X	X		X	X	1	0,4
X			X		44	18,3
X			X	X	3	1,3
				X X	11	4,6
		X			9	3,8
		X		X	11	4,6
		X	X		2	0,8
		X	X	X	1	0,4
	X				5	2,1
	X			X	1	0,4
	X		X		3	1,3
			X		24	10,0
			X	X	1	0,4
172	45	65	98	69	240	100

Fonte: Brouwer e Falcão (2001)

II.3. Factores que influenciam o consumo de diferentes fontes de energia

De acordo com Fernandes (1996), devido a vários factores tais como o aumento da estabilidade nas zonas rurais, a falta de chuva, estradas em melhores condições, desemprego rural e urbano, a produção de carvão vegetal aumentou, significativamente, nos últimos anos, tornando-o disponível e atractivo.

Do ponto de vista do consumidor, há várias razões para a popularidade do carvão vegetal e lenha, como combustíveis para cozinha. Estas podem ser divididas em duas categorias principais:

- Razões de conforto; e
- Razões de disponibilidade do produto e capacidade financeira.

As razões de conforto são aquelas que justificam a preferência do carvão em relação à lenha; e de acordo com Fernandes (1996), são as seguintes:

- É mais fácil de transportar;
- Está disponível a pequenas distâncias;
- Está pronto para ser consumido;
- Ao queimar, não deita muito fumo;
- Pode ser usado em locais fechados;
- É mais fácil a limpeza de panelas;
- Confere à comida um sabor especial;

As razões de disponibilidade do produto e capacidade financeira são as que fazem as pessoas se moverem do consumo de electricidade e gás para o carvão e lenha, ou de aumentarem o uso do carvão (Fernandes, 1996). A Tabela 3 apresenta as razões incluídas nesta categoria.

Tabela 3: Razões de disponibilidade do produto e capacidade financeira

Carvão vs gás	Carvão vs electricidade	
É vendido em pequenas quantidades	É vendido em pequenas quantidades	
É mais barato	Está disponível	
Pode ser utilizado em fogões baratos e portáteis	Não necessita de fogões caros	
Está disponível perto de casa	Não necessita de instalações adicionais	
É mais fácil de transportar		
Não necessita de contentores próprios	<u> </u>	

Fonte :Fernandes (1996).

Para o consumo doméstico do carvão, normalmente se utiliza um pequeno fogão feito de metal. Estes fogões são bastante simples e não necessitam de qualquer desenho da eficiência energética, podendo acomodar uma ou duas panelas.

Do ponto de vista do consumidor, o carvão e lenha são considerados de boa qualidade se (Fernandes, 1996):

- É fácil de acender;
- Queima durante um longo período;
- Ao queimar, não liberta grandes quantidades de fumo;
- Não cheira durante a queima;
- Não estala durante a queima.

II.4. Impacto ambiental do uso das diferentes fontes de energia

Araújo (2002) defende que, apesar de os recursos florestais estarem nas zonas rurais, os maiores beneficiários de produtos florestais são os habitantes das zonas urbanas. Deve ter-se em atenção que a maior pressão sobre o combustível vegetal não vem das áreas rurais, dos camponeses, mas sim dos esforços urbanos e da exploração comercial desenfreada dos recursos vegetais.

Com os fortes ritmos de migração campo-cidade, e aumento considerável da pobreza urbana, cada vez mais residentes urbanos dependem deste recurso energético. Praticamente, a zona rural, apesar de ser dependente também de combustível lenhoso, como fonte principal de energia, serve de exploração ou fonte de abastecimento de combustível lenhoso aos centros urbanos. Em muitos casos, o uso de ramos secos, derrubados durante a preparação da terra, e de árvores mortas, é suficiente para satisfazer as necessidades de consumidores rurais.

O abate irracional da vegetação traduz-se num desequilíbrio ecológico grave, provocando o desflorestamento, a erosão das vertentes, o empobrecimento dos solos e o risco da própria desertificação. A matéria orgânica amortece a erosão pluvial. Com a destruição da floresta, interrompe-se a acumulação superficial da matéria orgânica e se dificulta a absorção (esponja) das águas superficiais. Também se destrói o principal fornecedor de produtos mais activos para a alteração do subsolo. A degradação da vegetação reflecte-se, ao mesmo tempo, sobre as condições sócio-económicas da população, nomeadamente pelo crescimento e pressão demográficos sobre a terra, a diminuição das colheitas e a procura de ganhos suplementares na venda especulativa de lenha e carvão, que se regista sobretudo nas grandes cidades do país.

Com efeito, se a cinquenta anos era possível o abastecimento em carvão ou madeira na periferia da maioria das grandes cidades moçambicanas, hoje se torna necessário percorrer vários quilómetros para se alcançar os locais da sua extracção; operação que exige, por seu lado, o uso de combustíveis fôsseis mais onerosos (Mirasse, 2004 citando Williams, 1993).

Outras vantagens dos gases combustíveis são as possibilidades de controlar a atmosfera do equipamento térmico e de proporcionar uma fina regulagem de temperatura. O GLP e o gás natural tornam possível ainda a geração de atmosferas neutras ou redutoras com ausência de

fuligem, o que é impossível quando utilizamos óleos combustíveis. Essas características permitem a protecção contra a oxidação. http://www.ccpm.pt/25 pag028.htm (24/09/03)

Além disso, o baixo nível de excesso de ar de combustão contribuirá significativamente para a redução da formação de NO_X e em particular do NO₂, como indica a Tabela 4.

Tabela 4: Emissões de NO2 oriundas de combustíveis

Fontes	106 t NO2	%
Queima de carvão	26,9	50,8
Queima de óleos combustíveis	14,1	26,7
Queima de gasolina	7,5	14,2
Queima de gás natural	2,1	4,0
Queima de outros combustíveis	1,6	3,0
Refino do petróleo	0,7	1,3
Total	52,9	100,0

Fonte: http://www.ccpm.pt/25_pag028.htm (24/09/03)

Outra vantagem para o meio ambiente é a menor geração de CO₂ por caloria de gás queimado, devido à relação carbono / hidrogénio ser maior nos óleos do que nos gases combustíveis, além de serem praticamente isentos de enxofre, conforme mostra a Tabela 5. Nesta tabela, a eficiência de combustão não foi considerada, pois é particular a cada caso http://www.ccpm.pt/25_pag028.htm (24/09/03).

Tabela 5: Emissões de CO2 e SO2

Combustível	%C	Nm3 CO2/106 kcal	%S	Nm3 SO2/106 kcal
Óleo residual baixo S	87,0	165,0	1,0	1,0
Querosene	87,5	165,9	0,1	0,1
Óleo residual alto S	84,4	159,9	4,0	3,1
Óleo diesel	86,3	159,0	1,0	1,0
GLP	82,2	144,0	aprox. 0	аргох. 0
Gás natural	75,7	105,0	аргох. 0	aprox. 0

Fonte: http://www.ccpm.pt/25_pag028.htm(24/09/03)

III. METODOLOGIA

III.1. Recolha de dados

III.1.1. Área de estudo

A cidade da Beira situa-se na zona centro de Moçambique, na costa do Oceano Indico, limitada pelo distrito de Dondo, na zona Nordeste e pelo distrito de Búzi, na parte Sudoeste e banhada pelo Oceano Indico, no Este. Possui 4 Postos urbanos, como o ilustra o mapa, em anexo 1. Tem uma população de 397 688 habitantes, dos quais 205 734 são do sexo masculino e 191 634 do sexo feminino. Destes habitantes, 164 000 residem na cidade de cimento e 306 000 vivem em áreas espontâneas; destes últimos, 183 000 habitam em estabelecimentos precários (INE,1997).

As empresas locais estão estruturadas da forma seguinte: 540 têm entre 1 e 10 empregados; 75 empregam entre 11 e 30 trabalhadores; e 48 têm mais de 30 empregados. Entretanto, o Governo emprega 9 500 trabalhadores. Noutra vertente, as actividades informais absorvem 7 500 trabalhadores; as empresas de ramo comercial empregam 8 000 trabalhadores, enquanto o sector industrial possui 7 500 trabalhadores, com salários médios mensais a oscilar entre 420 000,00MT e 5 100 000,00MT. Sob o ponto de vista do género, verificou-se que as mulheres são marginalizadas no trabalho (em 1997, dos 2 000 trabalhadores formais registados, somente 180 eram mulheres). As mulheres, a juventude e os emigrantes dominam a economia informal frágil (Smith *et al*, 2002).

A importância da Beira, como segunda cidade mais importante do país, está baseada na sua posição geográfica a qual, aliada ao porto regional, com corredores rodoviários e ferroviários, que possui, serve aos países de interior tais como o Zimbabwe, a Zâmbia e o Malawi, sendo ainda terminal de oleoduto para o Zimbabwe.

III.1.2. Recolha de dados

A recolha de dados teve lugar no mês de Dezembro de 2003. Os dados foram obtidos através de uma amostragem estratificada. Tomou-se como base da estratificação os bairros, por estes, até certo ponto, reflectirem as características sócio-económicas da população. Em cada estrato

(bairro), obteve-se uma amostra, com a qual se achou que se podia obter uma boa relação entre os custos da realização do trabalho e o erro da amostragem. A selecção da unidade de amostra (agregado familiar) era feita através dos guias do campo, de modo a abraínger um maior número de unidades e quarteirões do bairro. Devido à limitação de tempo disponível, e do orçamento para as entrevistas, não foi possível aplicar a amostragem aleatória. No total, foram abrangidos oito bairros da cidade da Beira, como o mostra a Tabela 6.

Tabela 6: Divisão das amostras

N	Bairros	Postos administrativos urbano	Tamanho da população	Tamanho da amostra
1	Macute	PUA1	13928	30
2	Matacuane	PUA 1	28716	31
3	Pioneiros	PUA 1	7292	30
4	Munhava Central	PUA 2	31072	40
5	Munhava Matope	PUA 2	9086	33
6	Ponta Gêa	PUA 1	23873	31
7	Chingussura	PUA3	22376	35
8	Chipangara	PUA1	25136	33
	Total			264

Fonte: (INE, 1997)

III.1.3. Técnicas de pesquisa

Na pesquisa, foi aplicada a técnica de inquérito a uma amostra de lares dos diferentes bairros da cidade da Beira, tendo sido registadas as quantidades e os valores gastos no consumo da lenha, carvão, energia eléctrica, petróleo e gás, em cada lar; o número de membros do agregado familiar e refeições quentes comuns na família, entre outra informação. O anexo 2 apresenta o questionário aplicado.

III.2. Processamento de dados

Os dados foram processados em SPSS de modo a permitir a caracterização dos parâmetros relacionados com os aspectos sócio-económicos das famílias abrangidas pelo estudo; caracterizar o uso de energia doméstica; hábitos alimentares; assim como caracterizar o consumo e custos de energia doméstica nos lares.

III.2.1. Determinação de consumo e custos de energia doméstica

O consumo mensal de uma determinada fonte de energia foi obtido directamente da informação facultada pelos agregados familiares, durante o inquérito. Na falta de dados mensais, o consumo mensal foi calculado a partir de dados de consumo diário ou semanal. De uma forma geral, as famílias que consomem gás, carvão a saco ou electricidade, forneceram dados de consumos mensais; enquanto os consumidores de carvão a montinhos/a lata e de lenha deram informações de consumos diários ou semanais.

Os custos de consumo de uma dada fonte de energia, numa família, foram obtidos a partir da seguinte expressão:

 $C = Q \times P$

Onde:

C - o custo mensal unitário de cada fonte em MT

Q – quantidade mensal de cada fonte consumida (em sacos, montinhos e botijas)

P – preço de aquisição de cada fonte (MT)

O preço de carvão depende da sua forma de aquisição, variando de mercado a mercado e da qualidade. Este preço é igualmente influenciado pela época de consumo, isto é, é alto no tempo chuvoso e baixo na época seca, independentemente da quantidade consumida, o que, consequentemente, leva a variações nos custos de consumo. Neste trabalho, considerou-se 55 000,00MT como preço médio de carvão a saco. Quanto ao carvão a montinhos, foram considerados 1 000,00MT a unidade.

Em relação ao gás, tomou-se o preço de 169 000,00MT, por parecer um valor mais comum, não havendo muita variação no seu preço. A botija de gás é comprada ao mesmo preço, tanto nas bombas, como nas lojas especializadas, sendo relativamente maior a sua oferta nas casas comerciais; o preço varia também de acordo com o tipo de botija (tamanho em Kg), assim como com o fornecedor, isto é, quando se trate da Galp ou de Handgas.

III.2.2. Análise de consumo e custo das diferentes fontes de energia

No âmbito da análise do consumo das diferentes fontes de energia, foram aferidos os factores que estão por detrás do consumo e custos de energia. De igual modo, efectuou-se a comparação dos custos de energia. Para o efeito, foi aplicada a técnica de regressão linear, utilizando-se as quantidades ou os custos de energia consumida, por mês, como variáveis dependentes; e os parâmetros ligados a aspectos sócio-económicos e sociais, como variáveis independentes.

III.2.2.1. Variáveis independentes ligadas a aspectos sócio-económicos

Bairro de residência

Os bairros são, até certo ponto, indicadores do bem estar de quem neles vive, podendo influenciar a quantidade e os custos de consumo de uma dada fonte de energia. Neste estudo, foram estabelecidas duas categorias: Chipangara, Chingussura, Munhava Central e Munhava Matope foram considerados bairros suburbanos; e Macute, Matacuane, Pioneiros e Ponta Gêa foram categorizados como bairros de cimento, tendo-lhes cabido a seguinte codificação:

Bairro suburbano = 0 Bairro de cimento = 1

Tipo de casa

Outro indicador sócio-económico relevante é o tipo de casa, pelo facto de este poder reflectir, até certo ponto, o rendimento familiar. No presente estudo, foram distinguidos 7 tipos de residência, os quais foram, posteriormente, divididos em duas categorias: alvenaria e de construção precária. Nas casas de alvenaria, agrupam-se apartamentos; construções de blocos com cobertura de chapas de zinco, lusalite ou telhas; vivendas e dependências (compartimentos anexos às casas principais, arrendadas separadamente destas). As casas de construção precária são tipicamente dos bairros suburbanos, distinguindo-se nelas, as de pau e pique, construídas a partir de bambu e cobertas de chapas de zinco, lonas entre outros materiais. Para este caso, utilizou-se a seguinte codificação:

Construção precária = 0 Alvenaria = 1

III.2.2.2. Variáveis ligadas a aspectos sociais

Sexo do chefe da família

O sexo do chefe do agregado familiar parece determinante na maneira como o agregado usa uma dada fonte de energia; e neste estudo, coube-lhe a seguinte codificação:

Famílias chefiadas por mulher = 0 Famílias chefiadas por homem = 1

Tamanho do agregado familiar

O tamanho do agregado familiar pode influir na quantidade de uso de uma dada fonte de energia, pressupondo-se que uma família alargada (grande) faça maiores custos que uma família nuclear (pequena), mas não se sabe, exactamente, o grau da interferência deste parâmetro no custo; por poder assumir qualquer valor num intervalo, o parâmetro tamanho do agregado familiar foi analisado como variável contínua, no presente estudo.

IV. RESULTADOS E DISCUSSÃO

No presente capítulo, sistematizam-se e discutem-se os resultados alcançados. Os aspectos aqui apresentados reflectem sobretudo os objectivos específicos do estudo e as questões expostas no guião de entrevistas, conforme o anexo 2. Os dados são apresentados tanto sob forma de descrição, como em tabelas e gráficos, procurando ligar os resultados da pesquisa ao quadro teórico, ao mesmo tempo em que se procura, de forma crítica, avaliar/discutir os resultados obtidos.

IV.1. Caracterização geral dos agregados familiares da cidade da Beira

IV.1.1 Parâmetros ligados a aspectos sócio-económicos

O ponto de partida que se assume é que o bairro de residência e o tipo de casa são indicadores sócio-económicos do bem estar, podendo influir na quantidade e custos de consumo de uma dada fonte de energia, pelo facto de estes reflectirem, até certo ponto, o rendimento familiar.

IV.1.1.1. Bairros de Residência

A área de residência é um factor importante. Já no desenho do método de amostragem, se partiu do pressuposto de que o comportamento dos consumidores de combustível iria variar entre os bairros. De acordo com os resultados da Tabela 7, o número de inquiridos nos bairros suburbanos é de 55.2%, sendo superior ao dos bairros de cimento (44.8%), o que está de acordo com os resultados de INE, (1999) que apontam 54.29% de famílias nos bairros suburbanos e 45.71%. nas zonas de cimento.

Tabela 7: Número de agregados familiares inquiridos por categoria de Bairro

Categorias	Amostra		INE, (1999)	
	Número de inquiridos	Percentagem	Número	Percentagem
Bairros suburbanos	138	55.2	87670	54.29
Bairros de cimento	112	44.8	73809	45.71
Total	250	100		

IV.1.1.2. Tipos de Casa

A Tabela 8 mostra que 38.4% dos inquiridos vivem em casas de construção precária; e 61.6% residem em casas de alvenaria.

Tabela 8: Número de agregados familiares inquiridos por categoria de casas

Categorias	Número de inquiridos	Percentagem .
Construção precária	96	38.4
Alvenaria	154	61.6
Total	250	100

IV.1.2. Parâmetros ligados a aspectos sociais

IV.1.2.1. Género

Do total dos agregados familiares inquiridos, 185 têm como chefe um homem, correspondendo a 74%, contra apenas 65 chefiados por mulheres, o que representa 26%. Contudo, no presente trabalho, e como o ilustra a Tabela 9, a percentagem de famílias chefiadas por homens é inferior à obtida no senso de 1997. Em parte, estas diferenças explicam-se pelo facto de, contrariamente ao levantamento efectuado neste estudo, o senso de 1997, para além das habitações particulares, ter incluído habitações colectivas (pensões, hotéis e outras) habitadas, geralmente, por homens.

Tabela 9: Sexo do Chefe de agregado

Sexo do Chefe de agregado	Amost	ra	INE, (1999)		
	Número de inquiridos	Percentagem	Número	Percentagem	
Masculino	185	74.0	66703	80,92	
Feminino	65	26.0	15726	19.08	
Total	250	100.0	82429	100	

IV.1.2.2. Tamanho do agregado familiar

O tamanho do agregado pode influenciar positivamente o rendimento familiar, devido ao maior número de oportunidades de emprego para as famílias alargadas. Note-se, contudo, que, este factor pode ser também negativo, devido ao maior volume de despesas em que incorrem as famílias alargadas. A Figura 1 sumariza estas características demográficas. A composição dos agregados familiares varia de 1 a 15 membros, por agregado; tendo como classe com mais membros a que varia de 4-7 membros, o que corresponde a 50.8%.

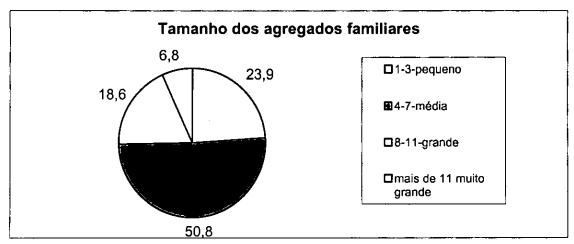


Figura 1: Tamanho dos agregados familiares

É de referir que a média do tamanho do agregado familiar obtida neste estudo é de 5.92 indivíduos, valor superior ao obtido por INE (1999), que aponta para 4.7 indivíduos. Parte da explicação deste facto é análoga à apresentada na epígrafe IV.1.2.1., tendo em conta que o tamanho do agregado familiar, em habitações colectivas, é, normalmente, bastante reduzido.

IV.2. Caracterização do uso de energia doméstica

IV.2.1. Formas de consumo de fontes de energia

As fontes de energia usadas na cidade da Beira podem ser agrupadas em duas categorias: fontes puras e fontes combinadas.

Para os propósitos do presente estudo, fontes puras são aquelas que são usadas exclusivamente sem combiná-las com outras, ou que, para além da fonte principal, usam, excepcionalmente, uma segunda ou terceira fonte. Diz-se que uma família usa fontes combinadas ou combinação de fontes, quando utiliza, nas actividades de cozinha, mais de uma fonte, durante o mês, podendo ou não distinguir a fonte principal das restantes.

O gráfico da Figura 2 ilustra as formas de consumo das fontes de energia, onde se verifica que 78% dos inquiridos consomem-na para cozinha na forma de fonte pura e uma menor percentagem (22%) na forma de fonte combinada.

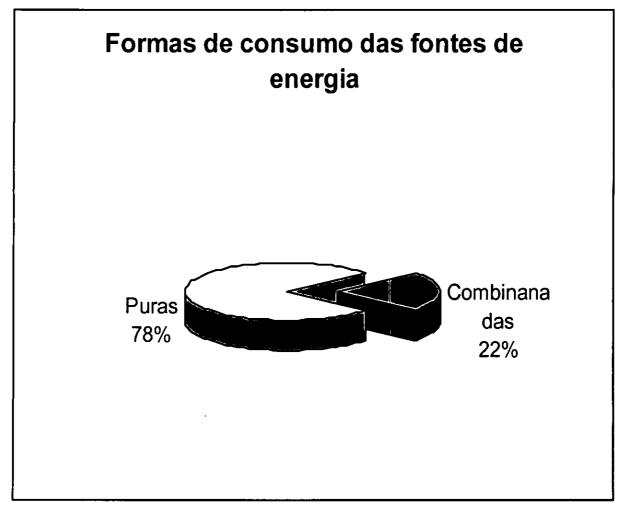


Figura 2. Formas de consumo das fontes de energia

IV.2.1.1 Fontes puras

O gráfico da Figura 3 mostra claramente que, dentro das fontes puras, o carvão é a fonte mais utilizada, onde 81% das famílias usam o carvão; enquanto 19% usam as outras fontes. O carvão, como fonte pura, inclui as modalidades de aquisição a saco, lata e a montinhos. Na categoria das outras fontes, aparecem a lenha, gás e electricidade, como o ilustra a Tabela 10.

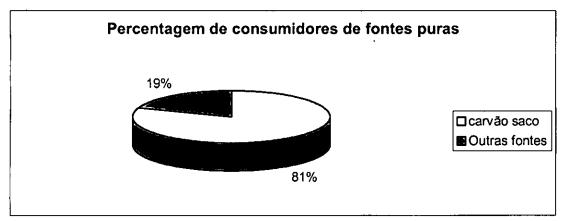


Figura 3. Consumo das fontes puras

Na mesma tabela (a 10), observa-se ainda que a lenha é a menos relevante dentro das fontes lenhosas, com apenas 6.28% dos agregados familiares a admitirem que a usam. As fontes não lenhosas, como são os casos de electricidade e gás, são usadas em proporções distintas: enquanto a primeira é usada apenas em 2.62%; a segunda atinge os 10.47%.

Tabela 10: Consumo de fontes Puras

	Fontes	Número de inquiridos	Percentagem	Percentagem
	carvão a saco	101	52.88	
Carvão	carvão a montinhos	32	16.75	
	carvão a lata	21	10.99	80.63
	Lenha	12	6.28	
Outras fontes	Gás	20	10.47	
	Electricidade	5	2.62	19.37
	Total	191	100	

IV.2.1.2 Combinações de diferentes fontes

Os agregados familiares usam, com maior frequência, mais de uma fonte de energia. A Tabela 11 sumariza as diferentes combinações que foram encontradas, durante o estudo. Do total de 59 agregados inquiridos, 34, correspondentes a 57.63%, usam basicamente combinações de fontes lenhosas, destacando-se as combinações em que entra o carvão, com maiores índices de uso.

Raras vezes, os agregados familiares combinam mais de três fontes. A combinação electricidadecarvão apresenta maiores valores que a combinação carvão-gás, uma vez que a electricidade constitui, por excelência, uma fonte de iluminação, sendo, por isso, de uma maior disseminação pelas casas da cidade da Beira, relativamente às famílias que utilizam gás. Com efeito, a maior parte das casas do bairro de cimento possui energia eléctrica, contrariamente ao número de famílias que possuem gás, nesses bairros, que é bastante reduzido.

Tabela 11: Combinações de diferentes fontes utilizadas na cidade da Beira

Combinações	Número	Percentagem	
Carvão-lenha	34	57.63	
Carvão-electricidade	11	18.64	
Carvão-petróleo	4	6.78	
Carvão-gás	7	11.86	
Gás-eletricidade	1	1.69	
Carvão-petróleo-electricidade	1	1.69	
Carvão-lenha-petróleo	1	1.69	
Total	59	100	

IV.3. Factores que influenciam o consumo e custos de energia

Na extensão da pesquisa sobre o consumo e os custos de energia, foram aferidos os factores que influenciam o consumo e os custos de energia. Dentre estes, destacam-se o bairro de residência; tipo de casa; sexo do chefe da família; o tamanho do agregado familiar e o tipo de refeição preparada. No que diz respeito às fontes, por insuficiência de dados, apenas se analisou o carvão na modalidade de saco e de montinhos; e nos combustíveis não lenhosos, caracterizou-se o gás, como fonte alternativa. Daqui em diante, o estudo irá convergir nas duas modalidades de aquisição do carvão e do combustível liquefeito (gás).

IV.3.1.1. Consumo e custo de carvão a saco

Depois de analisados os resultados da secção A, da Tabela 12, de análise de regressão, pode-se inferir que quanto maior for o tamanho do agregado familiar, maior será a quantidade consumida¹, isto é, o consumo de carvão a saco é influenciado unicamente pelo tamanho do agregado familiar. Estes resultados são suportados pelos encontrados na cidade de Maputo por Brouwer e Falcão (2001), ao afirmarem que o tamanho do agregado influía no consumo de carvão e lenha; e que as famílias que usavam o carvão tendiam a ser maiores do que as que usavam outro tipo de energia.

¹ Para mais detalhes sobre a análise de regressão, veja-se o anexo 3A.

Tabela 12: Factores que afectam o consumo e custos de carvão a saco

	Coeficientes(a)							
Secção		Coeficientes na	io padronizados	Coeficientes padronizados	t	Sig.		
		Beta	Erro Padrão	Beta				
	(Constante)	1.013	0.292		3.469	0.001		
	Bairros	0.109	0.16	0.07	0.684	0.496		
Α	Tipo de casa	0.185	0.157	0.114	1.175	0.243		
	Sexo do chefe da família	-0.0509	0.208	-0.023	-0.245	0.807		
	Tamanho de agregado familiar *	0.144	0.027	0.482	5.359	0.000*		
	A Variável dependente: consumo ca	irvão a saco						
		Beta	Erro Padrão	Beta	t	Sig.		
	(Constante)	60281.907	19380.805		3.11	0.002		
	Bairros	-7179.286	10651.668	-0.069	-0.674	0.502		
В	Tipo de casa*	30727.468	10493.438	0.285	2.928	0.004*		
	Sexo do chefe da família	-1750.918	13531.692	-0.012	-0.129	0.897		
	Tamanho de agregado familiar *	8166.097	1791.355	0.41	4.559	0.000*		
	A Variável dependente: custo de ca					•		

^{*} Variável estatisticamente significativa

De acordo com o anexo 4A da análise de regressão, cujos dados são resumidos na secção B da Tabela 12, é possível verificar que o tamanho do agregado familiar influencia nos custos de consumo de carvão adquirido a saco, isto é, agregados familiares nucleares têm menos custos que os alargados; o que não é de surpreender se se assumir que quanto maior for o tamanho do agregado, maior será a necessidade de preparação de grandes quantidades de refeições ou o provimento de maior quantidade sacos de carvão, durante o mês. O tipo de casa também mostrou influencia significativa nos custos de carvão a saco: mantendo iguais as outras condições, os custos de carvão a saco são mais altos nas casas de alvenaria que nas de construção precária.

Os indicadores sócio-económicos, tais como tipo de habitação, bairro de residência, assim como os aspectos sociais ligados ao género do chefe de família não tiveram nenhuma influência significativa no consumo de carvão a saco (Secção A, Tabela 12).

Como foi referido anteriormente, o sexo do chefe da família não influencia os custos de carvão a saco. A secção B da mesma Tabela (a 12) mostra que, apesar de as famílias chefiadas por indivíduos de sexo feminino apresentarem custos mais altos em relação às chefiadas por homens, esta diferença não é significativa. O indicador bairro de residência, que *a prior* foi inventariado

como pudesse influir no consumo, e, consequentemente, nos custos, demonstrou pouca relevância, o que vale afirmar que os custos de consumo de carvão a saco são iguais nos bairros suburbanos e nos de cimento.

IV.3.1.2. Consumo e custo de carvão a montinhos

O consumo de carvão a montinhos é influenciado pelo tamanho do agregado familiar e sexo do chefe de família, contrastando com os resultados encontrados na cidade de Maputo por Brouwer e Falcão (2001), ao afirmarem, com base nas análises estatísticas (X²), que não havia relação significativa entre o sexo do chefe e o tipo do combustível usado. Entretanto, os resultados em alusão não tiveram em linha conta as diferentes modalidades de aquisição de carvão, o que teria levado a perceber, com algum detalhe, a influencia exercida pelo sexo do chefe, na aquisição de carvão a montinhos. As famílias chefiadas por indivíduos de sexo feminino possuem um consumo mensal superior em 71.371 montinhos/mês, de acordo com a secção A da tabela 13². Na secção B da mesma tabela³, é possível verificar ainda que o tamanho do agregado familiar influi nos custos de consumo de carvão a montinhos, evidências suficientes para concluir que o tamanho do agregado possui diferentes custos mensais, quando o carvão é adquirido a montinhos, sendo que um agregado familiar nuclear tem menos custos que o alargado.

Tabela 13: Factores que afectam o consumo e custo de carvão a montinhos

	Coeficientes(a)												
Secção		Coeficientes nã	o padronizados	Coeficientes padronizados	t	Sig.							
		Beta	Erro Padrão	Beta									
	(Constante) Bairros	126.012 -92.411	28.332 53.551	-0.281	4.448 -1.726	0 0.096							
Α	Tipo de casa	33.995	33.128	0.209	1.026	0.314							
	Sexo do chefe da família* Tamanho do agregado familiar*	-71.371 14.261	32.924 4.271	-0.466 0.527	-2.329 3.339	0.028* 0.002*							
	a Variável dependente: consumo ca	arvão a saco											
		Beta	Erro Padrão	Beta	t	Sig.							
	(Constante) Bairros	111870.72 -22983.508	30856.946 58322.537	-0.065	3.625 -0.394	0.001 0.697							
В	Tipo de casa	21134.772	36080.532	0.121	0.586	0.563							
	Sexo do chefe da família Tamanho do agregado familiar*	-58548.931 17237.744	35857.871 4651.688	-0.331 0.594	-1.633 3.706	0.114 0.001*							
	a Variável dependente: custo de ca	rvão a montinhos			a Variável dependente: custo de carvão a montinhos								

^{*} Variável estatisticamente significativa

² Para mais detalhes sobre a análise de regressão, veja-se o anexo 3B

³ Para mais detalhes sobre a análise de regressão, veja-se o anexo 4B

Os indicadores sócio-económicos tais como tipo de habitação e bairro de residência não tiveram nenhuma influência estatisticamente significativa no consumo de carvão a montinhos.

O sexo do chefe da família não influi, significativamente, nos custos de carvão a montinhos, apesar de as famílias chefiadas por indivíduos de sexo feminino apresentarem custos mais altos em relação às chefiadas por homens (Secção B, da Tabela 13). Os indicadores bairro de residência e tipo de casa demonstraram importância discreta como o ilustra a mesma secção, o que vale afirmar que os custos de consumo de carvão a montinhos são iguais nos bairros suburbanos e nos de cimento, o mesmo sucedendo para as casas de alvenaria e de construção precária.

IV.3.1.3. Consumo e custo de Gás

O sexo do chefe e o tamanho do agregado familiar não mostraram diferenças estatisticamente significativas de acordo com a analise de regressão (p=0.05), (Secção A, da Tabela 14)⁴. Os factores bairro de residência e tipo de casa foram rejeitados pelo modelo de análise, por apresentarem, nalguns casos, valores inferiores a 1.

A secção B mostra um cenário igual ao encontrado no consumo de gás, ao evidenciar que o tamanho do agregado e o sexo do chefe da família não influem nos custos de gás a um nível de significância de α =0.05⁵.

⁴ Para mais detalhes sobre a análise de regressão, veja-se o anexo 3C

⁵ Para mais detalhes sobre a análise de regressão, veja-se o anexo 4C

Tabela 14: Factores que afectam o consumo de gás

	Coeficientes(a)					
Secção		Coeficientes padronizado:		Coeficientes padronizados	t	Sig.
		Beta	Erro Padrão	Beta		
	(Constante)	1.166	0.37		3.149	0.006
Α	Sexo do chefe da família	0.01531	0.049	0.078	0.314	0.758
	Tamanho de agregado familiar	-0.07308	0.27	-0.067	-0.271	0.79
	a Variável dependente: consumo	de gás				
		Beta	Erro Padrão	Beta	t	Sig.
	(Constante)	194197.76	63807.654		3.043	0.008
В	Tamanho de agregado familiar	2873.134	8416.992	0.087	0.341	0.738
	Sexo do chefe da família	-20164.179	46579.514	-0.111	-0.433	0.671
	a Variáveis Dependentes: custo	de gás		_		•

^{*} Variável estatisticamente significativa

IV.3.2. Fonte de energia Vs Tipo de refeição

Uma análise detalhada dos custos de energia doméstica passa pela necessidade de compreender a relação entre o tipo de prato confeccionado e a fonte de energia usada.

A Tabela 15 (com detalhe no anexo 5) mostra o predomínio do carvão na confecção dos pratos mais comuns na cidade da Beira, onde, pelo menos, 71% das famílias usam esta fonte de energia em todos os pratos.

Tabela 15: Tipo de energia usada na confecção de refeições/Tipo de refeições

	Arroz	Xima	Carne	C. Amendoim	Verdura	Feijão	Frango	Sopa	Esparguete
Fontes	%(N 246)	%(N 246)	%(N 245)	%(N 245)	%(N 246)	%(N 246)	(N 246)	%(N 246)	%(N 246)
Carvão	74.4	72.4	75.1	74.7	74.8	71.5	74.4	75.2	74.8
Lenha	9.8	10.2	8.6	9.8	9.8	15.4	9.3	9.3	9.3
Gás ·	10.6	10.6	10.2	10.2	10.2	8.1	11.0	10.2	10.6
Electricidade	5.3	6.9	6.1	5.3	5.3	4.5	5.3	5.3	5.3
Petróleo	-	-	-	-	-	0.4	•	-	-
Total	100	100	100	100	100	100	100	100	100

Outro cenário verifica-se na confecção de feijão, onde o uso da lenha aumenta de frequência, comparativamente às restantes fontes de energia. O carvão baixa a sua frequência em 0.9 a 3.7% enquanto a percentagem de gás tâmbém baixa, em pelo menos, 2.1% em comparação com outros pratos. Na preparação deste prato, aparece uma nova fonte fóssil que é o petróleo, numa percentagem de 0.4%.

Na análise de dados, constatou-se que muitas famílias que, normalmente usam gás como fonte principal, preferem preparar feijão utilizando carvão; enquanto as que usam carvão preferem a lenha para esta refeição. Dado que o número de famílias que usam carvão, como fonte pura ou principal (e que, portanto, usam lenha para a confecção de feijão), é muito superior ao das que usam gás (e que utilizam carvão para a confecção de feijão), resulta lógico que se observe uma diminuição de frequência de uso de carvão e um aumento de uso de lenha na confecção de feijão em comparação com outros pratos.

IV.4. Determinação do consumo e custos de energia nos agregados familiares

Devido à influência de vários factores, não controláveis, não se determinou, por agregado familiar, o consumo e os custos médios das diferentes fontes de energia para cidade da Beira. Contudo, com base nas equações obtidas, foram elaboradas tabelas que determinam os custos, assim como o consumo em determinadas circunstâncias.

Tal como se procedera anteriormente na análise de factores que influem no consumo e nos custos de energia doméstica, a determinação e a comparação do consumo e custos de energia foram realizadas para o carvão (sacos e montinhos) e gás, devido à insuficiência de dados relativos a outras fontes de energia.

IV.4.1. Consumo

Como foi visto na epígrafe IV.3.1.1, o consumo de carvão a saco é influenciado pelo tamanho do agregado familiar. A Tabela 16, que retoma a Tabela 12A, ilustra o consumo de carvão a saco, podendo-se verificar igualmente que os diferentes níveis de consumo dependem do tamanho do agregado: uma família de 3 membros consome 1.59 sacos; enquanto a de 7 gasta 2.17 sacos.

Tabela 16: Consumo de carvão a saco

Tamanho do agregado	Quantidade em Sacos/mês
3	1.59
4	1.73
5	1.88
6	2.02
7	2.17

A Tabela 17 mostra o consumo mensal de carvão, quando adquirido a montinhos, onde se observa a influência do tamanho do agregado familiar e do sexo do chefe do agregado. Um agregado composto por 3 membros consome 183.1 montinhos/mês, quando chefiado por um indivíduo de sexo feminino; e 106.3 montinhos/mês, quando chefiado por um indivíduo de sexo masculino. Mantendo o sexo constante, observa-se a influência do tamanho do agregado. A título de exemplo, considere-se o sexo feminino: um agregado de 3 membros consome 183.1 montinhos/mês; e um agregado com 7 membros, 240,1 montinhos/mês.

Tabela 17: Consumo de carvão a montinhos

Tamanho do agregado	Sexo de Chefe de agregado	Montinhos/ mês	sacos/ mês ⁶
	Feminino	183.1	2.6
3	Masculino	106.3	1.5
	Feminino	197.3	2.8
4	Masculino	120.6	1.7
	Feminino	211.6	3.0
3	Masculino	134.9	1.9
	Feminino	225.8	3.2
6	Masculino	149.2	2.1
, mg	Feminino	240.1	3.4
/	Masculino	163.4	2.3

A Tabela 18 mostra o consumo médio mensal de gás, onde, de acordo com a epígrafe IV.3.1.3, os factores sexo do chefe e tamanho do agregado não influenciavam o consumo de gás. Achou-se a média e obteve-se um consumo mensal de 1.2 botijas/mês, admitindo-se um desvio padrão de 0.34 e uma variança de 11.7%.

Tabela 18: Consumo médio de gás de iluminação

	Media	Desvio padrão	Variança
Consumo geral	1.184	0.342	0.117

IV.4.2. Custo

A Tabela 19 mostra o custo mensal de carvão, quando adquirido a saco, onde se observa a influência do tamanho do agregado familiar e do tipo de casa. O anexo 6 apresenta, analogamente, as tabelas detalhadas de custos. Um agregado familiar com 3 membros gasta 78 104.08MT/mês, quando reside numa casa de alvenaria; e 99 649.23MT/mês, quando reside numa casa de tipo precário. Mantendo o tipo de casa constante, observa-se a influência do

⁶ Equivalência em sacos sabendo que cada saco contém, em média, 70 montinhos de 1 000, 00MT.

tamanho do agregado. A título de exemplo, considere-se o tipo de casa alvenaria: um agregado familiar de 3 membros gasta 78 104.08MT/mês; e um agregado com 8, 128 112.40MT/mês.

Tabela 19: Custo mensal de carvão a saco

Tamanho do agregado	Tipo de casa	Custo (MT/Mês)
2	Alvenaria	78 104.08
3	Precária	99 649.23
1	Alvenaria	88 105.74
4	Precária	109 650.9
5	Alvenaria	98 107.4
3	Precária	119 652.6
6	Alvenaria	108 109.1
U	Precária	129 654.2
7	Alvenaria	118 110.7
,	Precária	139 655.9
8	Alvenaria	128 112.4
0	Precária	149 657.5

Conforme foi visto na epígrafe IV.3.1.2, o custo mensal do carvão, quando adquirido a montinhos, é influenciado pelo tamanho do agregado familiar. A Tabela 20 expõe o custo mensal do carvão, quando angariado a montinhos, exibindo os diferentes custos, em função do tamanho, e onde se observa que uma família de 3 membros gasta 170 627.70MT/mês; enquanto a de 7 membros despende 223 477.00MT/mês. O anexo 6 apresenta identicamente as tabelas pormenorizadas de custos.

Tabela 20: Custo mensal de carvão a montinhos

Tl dd-	0 (0.477)		
Tamanho do agregado	Custo (MT/Mês)		
3	170 627.696		
4	183 840.00		
5	197 052.00		
6	210 264.00		
7	223 477.00		

Como foi visto na epígrafe IV.3.1.3, relativamente ao gás, o custo de carvão a montinhos não é influenciado pelo tamanho do agregado familiar, tipo de casa, sexo do chefe, nem pelo bairro de residência. Determinou-se o custo médio, tendo sido de 184 852.94MT/mês.

IV.4.3. Comparação dos custos das fontes de energia

O custo mensal de carvão a saco, de acordo com a Tabela 21, é menor em 67 879.70MT, em relação ao gás; e menor, em 62 724.11MT, quando comparado ao adquirido a montinhos.

Tabela 21. Comparação dos custos de consumo doméstico de carvão e gás

Fonte (a)	Fonte (b)	b - a	P	Observação
C. a montinhos	Gás	-	0.13	NDS
C. a saco	Gás	67 879.70	0.00	HDS
C. a saco	C. a montinhos	62 724.11	0.00	HDS

A Tabela 21 mostra ainda que o custo mensal de carvão adquirido a montinhos é, estaticamente, igual ao custo mensal de gás. Contudo, e apesar de ser alto para muitos agregados familiares, é a forma de aquisição mais usada, devido à indisponibilidade financeira de muitos agregados inquiridos, pois o carvão a porões possui custos relativamente baixos, geralmente, 1 000.00MT cada porão; enquanto o saco custa 50-70 000,00MT, dentro da cidade.

Muitas vezes, as famílias não dispõem, no momento, de avultadas somas para adquirirem o carvão a saco ou o gás. Associado a este facto, o gás tem o valor de investimento inicial muito elevado (compra de fogão, botija, etc.). O anexo 7 apresenta, igualmente, as tabelas detalhadas dos custos de carvão e do gás para o uso doméstico.

IV.5. Limitações de estudo

Devido ao condicionante temporal e exiguidade orçamental para a realização das entrevistas, não foi possível combinar o instrumento de recolha de dados adoptado (o inquérito) com outros, como por exemplo, a aplicação da amostragem aleatória; facto que faz com que os nossos dados assumam mais um carácter qualitativo, dificultando a medição real dos custos das diferentes fontes de energia.

O consumo das diferentes fontes de energia, bem como os respectivos custos, ora em discussão no presente trabalho, foram obtidos com base em dados facultados pelas famílias que utilizam fontes puras. Tendo em conta que algumas dessas famílias declararam utilizar, excepcionalmente, outras fontes de energia, o consumo e os custos de energia aqui apresentados pecam por defeito, isto é, parecem ligeiramente inferiores aos reais;

Por outro lado, os valores dos custos referem-se apenas aos do consumo propriamente dito, e não têm em conta os associados co-lateralmente ao consumo, como, por exemplo, os custos de amortização de fogões utilizados, os custos de petróleo para acender o carvão, entre outros;

Finalmente, há a referir que a rejeição de 14 inquéritos, por estes não possuírem parâmetros suficientes para a análise, trouxe à superfície a necessidade de aprimoramento prévio dos instrumentos de pesquisa, para se evitarem situações inesperadas de redução do tamanho da amostra, levando à diminuição da consistência dos resultados alcançados.

V. CONCLUSÕES E RECOMENDAÇÕES

V.1. Conclusões

- Na cidade da Beira, foram encontradas duas formas de consumo das fontes de energia doméstica para cozinha, que são as fontes puras e as combinadas. As fontes puras foram em proporção de 78%; e as combinadas, 22%;
- As fontes de energia mais importantes na cidade da Beira são os combustíveis lenhosos, com grande destaque para o carvão, com 80.63%. O carvão, como fonte pura, inclui as modalidades de aquisição a saco, com 52.88%; a lata, com 10.99%; e a montinhos, com 16.75%. As combinações e fontes de energia que tiveram maiores percentagens são as que incluem carvão, onde a combinação carvão-lenha se destacou com 57.63%;
- Os factores que influenciam o consumo e os custos das diferentes fontes de energia estão ligados a aspectos sociais e sócio-económicos. Contudo, enquanto o bairro de residência da família não influi nos custos de consumo de carvão, o tipo de casa, o sexo do chefe e o tamanho do agregado influenciam no consumo e nos custos de carvão. O sexo do chefe, o tamanho do agregado e o tipo de casa não tiveram influência sobre os custos de consumo de gás, à excepção do bairro de residência;
- O tipo de refeição também influencia na escolha do combustível a usar. Neste aspecto, o
 prato de feijão mostrou maior influência, ao reduzir o consumo de carvão em 3.7%; e
 aumentar o de lenha em, pelo menos, 5.2%, em comparação com a preparação de outros
 pratos;
- Uma família de 6 membros, aproximadamente o tamanho médio do agregado encontrado neste estudo (5.7 membros) na cidade da Beira, consome por mês 2.02 sacos de carvão e paga 108 109.10 MT/mês, se reside numa casa de alvenaria; ou 129 654.20MT/mês, se vive numa casa de tipo precário. Na aquisição de carvão a montinhos, a mesma família gasta 210 264.00MT /mês e consome 225.8 porões, se chefiada por um indivíduo de sexo

feminino; ou 149.2, se o chefe da família for de sexo masculino. No caso de gás, o consumo médio é de 1.2 botijas, despendendo, em média, 184 852.94MT/mês, se se não considerar o uso excepcional de outras fontes de energia;

 Não existe diferença entre os custos de carvão a montinhos e o gás de iluminação. O gás custa mais 67 879.70 MT/mês que o carvão a sacos. Por outro lado, concluiu-se que o carvão a montinhos é mais caro que o carvão a sacos em 62 724.11MT/mês.

V.2 Recomendações

- Dar seguimento ao trabalho no sentido de se incluir, para além do consumo e custos das fontes puras, o custo de outras fontes utilizadas, excepcionalmente, pelas famílias;
- Efectuar um levantamento de dados com vista a determinar os custos globais de fontes de energia, incluindo os custos de amortização dos fogões, custôs de petróleo e de outros materiais associados ao consumo de energia doméstica para cozinha;
- Tendo em conta que os preços de fontes de energia variam com a estação do ano, realizar um estudo comparativo em relação aos custos de fontes de energia nas épocas chuvosa e seca;
- Realizar um estudo sobre a evolução dos custos de consumo de energia, com o tempo, assumindo que, enquanto o consumo das diferentes fontes de energia é bastante estável, os respectivos preços variam com o tempo;
- Efectuar estudos da mesma natureza, noutros pontos do país com enormes consumos de combustíveis lenhosos, como a cidade de Nampula.

VI. REFERÊNCIAS BIBLIOGRÁFICAS

Anónimo (1996) "Planeamento integrado de energia doméstica". UEM- Maputo.

Araújo, M. (2002). A Procura de Novos Caminhos. Site da internet: http/www.Yahoo.com.br 2/12/04

CHAPOSA (2000). Final Report. Faculdade de Agronomia e Engenharia Florestal. UEM. Maputo.

Dos Anjos, A. A.(1997) "Determinação do valor da árvore em pé para a Produção de lenha na cidade de Maputo". UEM- Maputo.

Falcão, M.& Brouwer, R. (2001), Wood to Ashes:Results of a Survey Among Consumers of Wood Fuel in Maputo, Department of Forest Engineering, UEM, Maputo, Mozambique, 5-8pp.

Fernandes (1996) "Evolução do sector energético em Moçambique". DNE/UEM- Maputo.

http://www.ine.gov.mz15/03/2004

http://webserver.map.gov.mz/dnffb/flores.htm l (2/10/03)

http://www.ccpm.pt/25 pag028.htm(24/09/03)

http://www.aeportugal.pt/ (2004-10-15)

Langa, S. (2002). Importância de comboio no abastecimento de combustível lenhoso à cidade de Maputo. DEF-FAEF- UEM- Maputo. Tese de licenciatura

Macuacua, N. (1997). Impacto de produção de carvão nas comunidades rurais no distrito de Moamba. UEM- Maputo. Tese de licenciatura

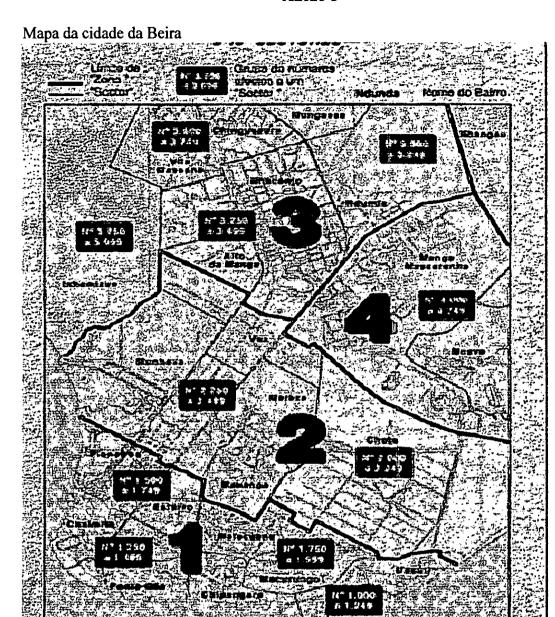
Magane, D. M. (1998). Estrutura de preços de carvão vegetal: um contributo para a revisão do sistema de taxas florestais. DEF-FAEF- UEM- Maputo. Tese de licenciatura

Manso, O. (1996). Evolução do sector energético em Moçambique. DNE/UEM - Maputo.

Matos, A. F (1978). Dicionário de Língua Portuguesa. Lisboa-Portugal.

Mendes, M. (1978) "Diagnóstico da participação do subsector na economia Brasileira". Brasília.

Mirasse, J. J. (2004). Consumo de combustível lenhoso na Vila do distrito de Marracuene - Província de Maputo. PPV-FAEF- UEM- Maputo. Tese de licenciatura


Perreira, C. (2001). Perspectivas para fornos melhorados em Catuane . UEM-FAEF-DEF-Maputo

SAKET, M. (1994). The exploratory national forest inventory. National Directorate of Forestry and Wildlife. Maputo. 77p.

Smith, G. Klug, N. Pitt, C. (2002). REFLECTIONS OF THE EVIDENCE FROM A CASE STUDY OF THE CITY OF BEIRA AND THE MUNCIPLALITY OF DONDO, SOFALA PROVINCE, MOZAMBIQUE, em http://www.saplanners.org.za/SAPC/papers/Pitt-52.pdf

Anexo 1 : Mapa da área de estudo (cidade de Beira)

Anexo 1

Anexo 2 : Questionário para caracterização do consumo e custo de combustíveis lenhosos e outras fontes de energia na cidade de Beira

Questionário para caracterização do consumo e custos de combustíveis lenhosos e outras fontes de energia na cidade de Beira INQUERITO

-	os agregados i	familiares:		
1.Sobre a	•			
	ão da residênc			
			Dependência	
Casa em no	edra e bambu (com chanas de zinco	Flat	
Casa em bl	locos com cha	Flat Vivenda	•	
Outros				·
2. Sobre o	lar	 		
Nome do c	hefe de famíli	a	H/M	
Idade do cl	hefe:	anos		
•	essoas vivem n	na sua casa?		
	pessoas		•	
	as suas idades	· •		T
Idade	Sexo	Rendimento	Outras fontes de	Região de
		Salário (MT/mês)	rendimento (MT/mês)	origem
				
				ļ <u>.</u>
				<u> </u>
3. Sobre a	origem da fa	mília		
Campo (es	specifique)			
Relegiao				
<u> </u>				
4. Usos de	combustíveis	s a preparação dos refe		
	nergia	I	Descrição dos pratos para os	s quais é usada
Lenha				
Carvão				
Petróleo	· · <u>-</u>			
Gás				
Electricidad	de			
Outro				
T 1'	1 6		_	
Indique as	duas iontes de	e energia que mais utiliz	ä	
2° .				
	ião usa outras	fontes alternativas		
-/ - 3. 4-2 .		· · · · · · · · · · · · · · · · · · ·		

a)	Se Usa-se só o carvão qual seria o seu consumo?
b)	Se Usa-se só a lenha qual seria o seu consumo?
c)	Se Usa-se só o gás qual seria o seu consumo?
d)	Se Usa-se só a electricidade qual seria o seu consumo?

ii) Discriminação de prioridade dos pratos e as respectivas fontes usadas

Pratos	Ordem	Fontes de energia	Tempo que leva na preparação
Arroz			
Xima			
Feijão			
Carne			
Peixe			
Caril de amendoim			
Verdura			

5.caraterizaçãodo consumo de diferentes fontes de consumo

Fonte	quantidades	Dias de consumo	Ultima data de compra	Preço	Proveniência	Local de compra
Lenha boa						
Lenha má						
Carvão boa						
Carvão ma		_				
Petróleo						
Gás						"
Electricidade						
(factura)						
Outro						

Anexo 3: Regressões de factores que influem no consumo de carvão a saco, a montinho e gás

Anexo 3A Regressão de consumo de carvão a saco

	Variáveis Entradas/Removidas (b)		
Modelo	Variáveis Entradas	Variáveis Removidas	Metődo
1	tamanho real de agregado familiar, Tipo de casa, Sexo do chefe da família, bairros(a)		. Entrada
a Todas	Variáveis Entradas analisadas.		•
b Variáv	vel dependente: Consumo mensal de carvão a saco		

	Modelo Sumário							
Modelo R R quadrado R quadrado ajustado Erro padrão de estimati								
1	.509(a)	.259	.227	.685				
a Predictores: (Constante), . tamanho real de agregado familiar, Tipo de casa, Sexo do chefe da familia, bairro								

	ANOVA(b)								
Modelo Soma dos quadrados gl Quadrado médio F Sig.									
	Regressão	15.257	4	3.814	8.111	.000(a)			
1	Residual	43.733	93	.470					
	Total	58.990	97						

a Predictores: (Constante), . tamanho real de agregado familiar, Tipo de casa, Sexo do chefe da familia, bairro

b Variável dependente: Consumo mensal de carvão a saco

Coeficientes(a)								
		Coeficien padroni		Coeficientes padronizados	t	Sig.		
N	1odelo .	В	Std. Error	Beta				
	(Constante)	1.013	.292		3.469	.001		
	bairro	.109	.160	.070	.684	.496		
ı	Tipo de casa	.185	.157	.114	1.175	.243		
-	Sexo do chefe da familia	-5.093E-02	.208	023	245	.807		
	tamanho real de agregado familiar	.144	.027	.482	5.359	.000		
a	Variável dependente: Consumo mensal de carvão a saco							

Anexo 3B. Regressão de consumo de carvão a montinho

	Variáveis Entradas/Removidas(b)							
Modelo	Variáveis Entradas	Variáveis Removidas	Metődo					
1	tamanho real de agregado familiar, Tipo de casa, bairro, Sexo do chefe da familia(a)		. Entrada					
a Todas	a Todas Variáveis Entradas analisadas.							
b Variáv	rel dependente: Consumo mensal de carvão a montinho	•						

Modelo Sumário									
Modelo R R quadrado R quadrado ajustado Erro padrão de estimativa									
1	.614(a)	.377	.285	68.5093					
	a Predictores: (Constante), . tamanho real de agregado familiar, Tipo de casa, bairro, Sexo do chefe da familia								

	ANOVA(b)							
M	odelo	Soma dos quadrados	gl	Quadrado médio	F	Sig.		
	Regressão	76674.736	4	19168.684	4.084	.010(a)		
1	Residual	126725.264	27	4693.528		,		
	Total	203400.000	31					

a Predictores: (Constante), . tamanho real de agregado familiar, Tipo de casa, bairro, Sexo do chefe da família

b Variável dependente: Consumo mensal de carvão a montinho

		Coe	ficientes(a)			
			entes não nizados	Coeficientes padronizados	t	Sig.
Modelo		B Std. Error Beta				
	(Constante)	126.012	28.332		4.448	.000
	bairro	-92.411	53.551	281	1.726	.096
1	Tipo de casa	33.995	33.128	.209	1.026	.314
	Sexo do chefe da família	-76.681	32.924	466	2.329	.028
	tamanho real de agregado familiar	14.261	4.271	.527	3.339	.002

Anexo 3C Regressão de consumo de gás

	Variáveis Entradas/Removidas)		
Modelo	Variáveis Entradas	Variáveis Removidas	Método
1	tamanho real de agregado familiar, Sexo do chefe da família(a)		. Entrada
	a Todas	Variáveis Entrada	is analisadas
b Variável	dependente: Consumo mensal de gás	Variaveis Elitrada	is allalisa

Modelo Sumário							
Modelo	R	R quadrado	R quadrado ajustado	Erro padrão de estimativa			
.103(a)	.011	113	.3608	.103(a)			
a Predictores:(Constante),. tamanho real de agregado familiar, Sexo do chefe da família, bairro							

			A	NOVA(b)		
M	lodelo	Soma dos quadrados	gl	Quadrado médio	F	Sig.
	Regressão	.023	2	.011	.086	.918(a)
1	Residual	2.083	16	.130		
	Total	2.105	18			
a	Predictores:	(Constante), . tamanho r	eal c	le agregado familiar	, Sexo	do chefe da familia, bairro
b	Variável dep	endente: Consumo mens	al de	e gás		•

		Coeffic	ients(a)			
		Unstanda Coeffic		Standardized Coefficients	t	Sig.
Model		В		Beta		
	(Constant)	1.166	.370		3.149	.006
1	tamanho real de agregado familiar	1.531E-02	.049	.078	.314	.758
	Sexo do chefe da familia	-7.308E-02	.270	067	271	.790

Anexo 4: Regressões de factores que influem nos custos de carvão a saco, a montinho e gás

Anexo 4A Regressão custo de carvão saco

	Variáveis Entrada/Removidas)		
Modelo	Variáveis Entrada	Variáveis retiradas	Método
1	Tipo de casa, Tamanho da família, Sexo do chefe da família, Bairro de residência(a)	•	Entrada
a All req	uested Variáveis Entrada.	,	
b Variáv	el dependente: Custo mensal de carvão saco		

	Model Summary							
Model R R Square Adjusted R Square Std. Error of the Estimate								
1	.502(a)	.252	.220	45753.96217				
	ors: (Consta residencia		asa, Tamanho da familia	a, Sexo do chefe da familia,				

	ANOVA(b)							
	Model	Sum of Squares	df	Mean Square	F	Sig.		
	Regressão	66370065092.881	4	16592516273.220	7.926	.000(a)		
1	Residual	196781955109.139	94	2093425054.353				
	Total	263152020202.020	98					

a Predictors: (Constant), Tipo de casa, Tamanho da familia, Sexo do chefe da familia, Bairro de residencia

b Variável dependente: Custo mensal de carvão saco

	Coefficients(a)							
		Coeficientes não padronizados		Coeficientes padronizados	t	Sig.		
	Model	В	Std. Error	Beta				
	(Constant)	60281.907	19380.805		3.110	.002		
	Tamanho da familia	8166.097	1791.355	.410	4.559	.000		
$\begin{bmatrix} 1 \end{bmatrix}$	Bairro de residencia	-7179.286	10651.668	069	674	.502		
	Sexo do chefe da familia	-1750.918	13531.692	012	129	.897		
	Tipo de casa	30727.468	10493.438	.285	2.928	.004		
a `	Variável dependente: Cu	sto mensal de	e carvão saco)	•			

Anexo 4A Regressão custo de carvão saco(continuação)

Variáveis Entrada/Removed(b)							
Model Variáveis Entrada Variáveis retiradas Method							
1	Tipo de casa, Tamanho da familia(a)		Enter				
a All requested V	ariáveis Entrada.						
b Variável dependente: Custo mensal de carvão saco							

Model Summary									
Model	Model R R Square Adjusted R Square Std. Error of the Estimate								
1	.499(a)	.249	.233	45385.68744					
a Predictors: (Constant), Tipo de casa, Tamanho da familia									

		ANO	VA	(b)		
Mo	del	Sum of Squares	df	Mean Square	F	Sig.
	Regressão	65405400300.614	2	32702700150.307	15.876	.000(a)
1	Residual	197746619901.407	96	2059860623.973		
	Total	263152020202.020	98			
	a Predict	ors: (Constant), Tipo	de	casa, Tamanho da	familia	
	b Var	iável dependente: Cı	ısto	mensal de carvão s	aco	

			Coeficientes(a))		
			ntes não iizados	Coeficientes padronizados	t	Sig.
	Model	В	Std. Error	Beta		
	(Constant)	55828.234	12836.074		4.349	.000
1	Tamanho da familia	8277.019	1765.671	.415	4.688	.000
	Tipo de casa	27898.590	9550.345	.259	2.921	.004
	a \	/ariável depend	ente: Custo mei	nsal de carvão saco		

Anexo 4B Regressão custo de carvão a montinhos

	Variáveis Entrada/Removed(b)		
Model	Variáveis Entrada	Variáveis retiradas	Method
1	Sexo do chefe da familia, Bairro de residencia, Tamanho da familia, Tipo de casa(a)		Enter
•	a All requested Variáveis Entrada.		
	b Variável dependente: Custo mensal de carvão a	montinho	

		<u>.</u>	Model Summary	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.598(a)	.358	.263	74614.14415
a Predi	ctors: (Con	stant), Sexo d	lo chefe da familia, Bair família, Tipo de casa	ro de residencia, Tamanho da

		Aì	AVOV	(b)		
	Model	Sum of Squares	df	Mean Square	F	Sig.
	Regressão	83876616241.438	4	20969154060.359	3.767	.015(a)
1	Residual	150316303680.437	27	5567270506.683		
	Total	234192919921.875	31			

a Predictors: (Constant), Sexo do chefe da familia, Bairro de residencia, Tamanho da familia, Tipo de casa

b Variável dependente: Custo mensal de carvão a montinho

		Co	pefficients(a)			
		Coeficien padron		Coeficientes padronizados	t	Sig.
	Model	В	Std. Error	Beta	7	
	(Constant)	111870.717	30856.946		3.625	.001
	Tamanho da familia	17237.744	4651.688	.594	3.706	.001
1	Bairro de residencia	-22983.508	58322.537	065	394	.697
	Tipo de casa	21134.772	36080.532	.121	.586	.563
	Sexo do chefe da familia	-58548.931	35857.871	331	1.633	.114
	a Variávo	el dependente: (Custo mensal d	e carvão a montinho	•	· · · · · · · · · · · · · · · · · · ·

Anexo 4C Regressão de custo gás

	Variáveis Entrada/Removed(b)		
Model	Variáveis Entrada	Variáveis retiradas	Method
1	Sexo do chefe da familia, Tamanho da familia, Bairro de residencia(a)		Enter
a All requ	ested Variáveis Entrada.		
b Variáve	l dependente: Custo mensal de gás		

	Model Summary							
Model	Model R R Square Adjusted R Square Std. Error of the Estimate							
1	.534(a)	.285	.132	54906.51909				
a Predictor	s: (Const	ant), Sexo	do chefe da familia,	Tamanho da familia, Bairro de residencia				

			A	NOVA(b)	•	
Γ	Model	Sum of Squares	df	Mean Square	F	Sig.
	Regressão	16828963262.477	3	5609654420.826	1.861	.183(a)
1	Residual	42206161737.523	14	3014725838.395		•
	Total	59035125000.000	17			
Z	Predictors: (Constant), Sexo do che	efe da	familia, Tamanho da	a familia, B	airro de residencia
		b Variável d	epend	lente: Custo mensal o	le gás	

		Coef	ficients(a)			
		Coeficier padroni		Coeficientes padronizados	t	Sig.
	Model	В	Std. Error	Beta		
	(Constant)	331141.405	82441.495		4.017	.001
	Tamanho da família	1534.196	7464.922	.047	.206	.840
1	Bairro de residência	-129579.482	56883.817	518	2.278	.039
	Sexo do chefe da família	-28346.580	41338.867	156	686	.504
a	Variável dependente: Custo	mensal de gás				

Anexo 4C Regressão de custo gás (continuação)

	Variássais Entrada/Dama	d/h)	•
	Variáveis Entrada/Remo	oved(b)	
Model	Variáveis Entrada	Variáveis retiradas	Method
1	Bairro de residencia(a)		Enter
a All requested Variáveis Ent	rada.		
b Variável dependente: Custo	mensal de gás		

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.509(a)	.259	.212	52301.33982
a Predictors: (Constant), Bairro de residencia				

ANOVA(b)						
Model		Sum of Squares	df	Mean Square	F	Sig.
	Regressão	15268242647.059	1	15268242647.059	5.582	.031(a)
1	Residual	43766882352.941	16	2735430147.059		
	Total	59035125000.000	17			
a Predictors: (Constant), Bairro de residencia						
b Variável dependente: Custo mensal de gás						

	Coefficients(a)					
		Coeficientes não padronizados		Coeficientes padronizados	t	Sig.
	Model	В	Std. Error	Beta		Sig.
	(Constant)	312000.000	52301.340		5.965	.000
1	Bairro de residencia	-127147.059	53817.635	509	2.363	.031
a `	a Variável dependente: Custo mensal de gás					

Anexo 5 : Tipo de energia usada na confeição de refeições Vs tipo de refeições

Tipo de energia usada na confeição Arroz			
	Frequência	Percentagem Valida	
Carvão	183	74.4	
Lenha	24	9.8	
Gás	26	10.6	
Electricidade	13	5.3	
Total	246	100.0	

Tipo de energia usada na confeição Xima			
	Frequência Percentagem Valid		
Carvão	178	72.4	
Lenha	25	10.2	
Gás	26	10.6	
Electricidade	17	6.9	
Total	246	100.0	

I

Tipo de energia usada na confeição Carne			
	Frequência	Percentagem Valida	
Carvão	184	75.1	
Lenha	21	8.6	
Gás	25	10.2	
Electricidade	15	6.1	

Tipo de energia usada na confeição carril de amendoim			
	Frequência	Percentagem Valida	
Carvão	183	74.7	
Lenha	24	9.8	
Gás	25	10.2	
Electricidade	13	5.3	
Total	245	100.0	

Tipo de energia usada na confeição Verdura			
	Frequência	Percentagem Valida	
Carvão	184	74.8	
Lenha	24	9.8	
Gás	25	10.2	
Electricidade	13	5.3	
Total	246	100.0	

Tipo de energia usada na confeição feijao			
	Frequência	Percentagem Valida	
Carvão	176	71.5	
Lenha	38	15.4	
Gás	20	8.1	
Electricidade	11	4.5	
Petróleo	1	.4	
Total	246	100.0	

Tipo de energia usada na confeição Frango			
	Frequência Percentagem Valid		
Carvão	183	74.4	
Lenha	23	9.3	
Gás	27	11.0	
Electricidade	13	5.3	
Total	246	100.0	

Tipo de energia usada na confeição Sopa			
	Frequência	Percentagem Valida	
Carvão	185	75.2	
Lenha	23	9.3	
Gás	25	10.2	
Electricidade	13	5.3	
Total	246	100.0	

Tipo de energia usada na confeição Esparguete			
	Frequência Percentagem Val		
Carvão	184	74.8	
Lenha	23	9.3	
Gás	26	10.6	
Electricidade	13	5.3	
Total	246	100.0	

Anexo 6: Quantidades e custos de consumo de carvão a saco, montinho e gás

Tabela 1 consume de carvão a saco

		- -	i		Taman	ho de agr	Tamanho de agregado familiar	niliar		
Bairro	Tipo de casa	Sexo de Chere de agregado		2	3	4	5	9	7	∞
		Feminino	1.16	1.45	1.59	1.73	1.88	2.02	2.17	2.31
	Construção precária	Masculino	1.11	1.39	1.54	1.68	1.83	1.97	2.11	2.26
,		Feminino	1.34	1.63	1.77	1.92	2.06	2.21	2.35	2.49
suburbano	Construção Alvenaria	Masculino	1.29	1.58	1.72	1.87	2.01	2.16	2.30	2.44
		Feminino	1.27	1.55	1.70	1.84	1.99	2.13	2.27	2.42
	Construção precária	Masculino	1.22	1.50	1.65	1.79	1.94	2.08	2.22	2.37
	•	Feminino	1.45	1.74	1.88	2.03	2.17	2.32	2.46	2.60
Cimento	Construção Alvenaria	Masculino	1.40	1.69	1.83	1.98	2.12	2.26	2.41	2.55

				Ta	manho d	Tamanho de agregado familiar	do famil	iar	
Ваіто	Tipo de casa	Sexo de Chefe de agregado	6	10	11	12	13	14	15
		Feminino	2.45	2.60	2.74	2.89	3.03	3.17	3.32
	Construção precária	Masculino	2.40	2.55	5.69	2.83	2.98	3.12	3.27
		Feminino	2.64	2.78	2.93	3.07	3.21	3.36	3.50
suburbano	Construção Alvenaria	Masculino	2.59	2.73	2.88	3.02	3.16	3.31	3.45
		Feminino	2.56	2.71	2.85	2.99	3.14	3.28	3.43
	Construção precária	Masculino	2.51	2.66	2.80	2.94	3.09	3.23	3.38
		Feminino	2.75	2.89	3.04	3.18	3.32	3.47	3.61
Cimento	Construção Alvenaria	Masculino	2.70	2.84	2.98	3.13	3.27	3.42	3.56

Tabela 2 consumo de carvão a montinhos

	Tipo de	Sexo de Chefe				Taman	ho de agre	Tamanho de agregado familiar	liar			
Bairro	casa	de agregado	1	2	3	4	5	9	7	8	6	10
	Construção	Feminino	140.27	168.79	183.05	197.31	211.58	197.31 211.58 225.84	240.1	254.36	254.36 268.62	282.88
	precária	Masculino	63.59	92.11	106.38	120.64	120.64 134.90	149.16 163.42		177.68 191.94	191.94	206.20
	Construção	Feminino	174.27	188.53	188.53	188.53	188.53	188.53 188.53 188.53 188.53 188.53 188.53	188.53	188.53	188.53	188.53
suburbano	Alvenaria	Masculino	97.59	126.11	140.37	154.63	168.89	154.63 168.89 183.15 197.41 211.68 225.94	197.41	211.68	225.94	240.20
	Construcão	Feminino	47.86	76.38	90.65	104.91	119.17	104.91 119.17 133.43 147.69 161.95 176.21	147.69	161.95	176.21	190.47
	precária	Masculino	13.9	26.8	27.33	28.23	42.49	56.75	56.75 71.01 85.27	85.27	99.53	113.79
	Construção	Feminino	81.86	110.38	124.64	138.90	153.16	138.90 153.16 167.42	181.68 195.95 210.21	195.95		224.47
Cimento	Alvenaria	Masculino	5.18	33.70	47.96	62.22	76.48		90.74 105.00 119.26 133.53 147.79	119.26	133.53	147.79

Toholo 2 do

Tabela 3 de co	l'abela 3 de consumo de gas							
				Taman	Tamanho de agregado familiar	egado fa	miliar	
Bairro	Tipo de casa	Sexo de Chefe de agregado	3	4	5	6	L	8
		Feminino	2.10	2.11	2.12	2.12	2.13	2.14
	Construção precária	Masculino	1.98	1.99	1.99	2.00	2.01	2.01
		Feminino	2.10	2.11	2.12	2.12	2.13	2.14
suburbano	Construção Alvenaria	Masculino	1.98	1.99	1.99	2.00	2.01	2.01
		Feminino	1.23	1.24	1.25	1.25	1.26	1.27
	Construção precária	Masculino	1.11	1.11	1.12	1.13	1.14	1.14
		Feminino	1.23	1.24	1.25	1.25	1.26	1.27
Cimento	Construção Alvenaria	Masculino	1.11	1.11	1.12	1.13	1.14	1.14

Tabela 4 custos de consumo de s carvão a saco, a montinho e gás

Tamanho de agregado	Tipo de casa	sacos	montinho	gás
_	Alvenaria	58100.75	123700.8	125919.8
,	Precária	79645.9	145245.9	147464.9
,	Alvenaria	68102.42	133702.4	135921.4
7	Precária	89647.57	155247.6	157466.6
3	Alvenaria	78104.08	143704.1	145923.1
Ċ	Precária	99649.23	165249.2	167468.2
V	Alvenaria	88105.74	153705.7	155924.7
r	Precária	109650.9	175250.9	177469.9
¥	Alvenaria	98107.4	163707.4	165926.4
ſ,	Precária	119652.6	185252.6	187471.6
7	Alvenaria	108109.1	173709.1	175928.1
O	Precária	129654.2	195254.2	197473.2
٢	Alvenaria	118110.7	183710.7	185929.7
,	Precária	139655.9	205255.9	207474.9
٥	Alvenaria	128112.4	193712.4	195931.4
0	Precária	149657.5	215257.5	217476.5
O	Alvenaria	138114.1	203714.1	205933.1
	Precária	159659.2	225259.2	227478.2
10	Alvenaria	148115.7	213715.7	215934.7
10	Precária	169660.9	235260.9	237479.9
11	Alvenaria	158117.4	223717.4	225936.4
11	Precária	179662.5	245262.5	247481.5
1.3	Alvenaria	168119	233719	235938
71 .	Precária	189664.2	255264.2	257483.2
15	Alvenaria	198124	263724	265943
1.3	Precária	219669.2	285269.2	287488.2

1

.