

# Environmental Flows and Restoration of the Zambezi Delta, Mozambique





Dr. Richard Beilfuss
International Crane Foundation











### **Energy optimization**

- >5000 MW installed
- >13 000 MW potential

Subordinate functions
flood control
water supply
reservoir development

### "Worst" climate future among 11 African river basins: 26-40% reduction in runoff by 2050





### Zambezi River Delta Environmental Flows Program

- 1. Economic valuation of restored delta biodiversity, ecosystem services, livelihoods relative to hydropower
- 2. Water availability for multi-objective operation
- 3. Trade-offs among water requirements for different users
- 4. Implementation and adaptive management













### African buffalo

- Dry season body condition linked to declining soil moisture content
- Loss of carrying capacity related to wetland drying and increased fire
- Ecotourism and hunting revenue value of restored floodplains habitat at \$millions/yr













### **Endangered Wattled Crane**

- ~90% population reduction
- •Reduction in main food source (*Eleocharis* rush tubers) and increased nest vulnerability to fire
- Substantial floodplain breeding grounds could recover with correctly timed annual floods of sufficient duration

Bento et al. 2007







#### Commercial and small-holder agriculture

- Mistimed floods damage riverbank cropping; increase drought vulnerability
- Reduced area for flood recession crops linked to
  >30% productivity decline
- Salinity intrusion most significant threat to sugar production
- Economic valuation of annual floods for agriculture suggests \$millions/yr







#### Freshwater fisheries

- Reduction in freshwater fisheries directly related to reduced flooded area and duration and mistimed flooding regime
- 30,000-50,000 tonnes per annum under restored flooding regime
- •Highly responsive to large flooding events (2001, 2008)



### Wild-caught shrimp fisheries

- Life-cycle depends on wet season flood pulse and dry season low flows
- Strong correlation between
   Zambezi annual runoff pattern and fishery catch rate
- Lost economic value \$10-30 million/yr could be recovered









### Floodplain grazing lands

- Reduced extent and quality of end-of-dry season grazing lands for cattle
- Restored floods flush diseasebearing ticks off of floodplain
- Lost economic value \$millions could be recovered



da Silva 2006





### Water supply

- >5 m water table decline on delta floodplain due to diminished recharge
- Increasing dependence on Zambezi River to meet domestic water requirements—crocodiles, waterborne disease
- Est. annual value \$9 million during normal/flood; \$14 million during drought years.

Guveya & Sukume (2008)





#### **Cultural values**

- Ceremonial, recreational, aesthetic, and spiritual values affected by changes in flow regime
- Improvements linked to restoration of more natural flow regime









### Settlement and displacement

Adaptation to loss of flood pulse results in higher social and economic costs during very large (uncontrollable) floods

Loss of life, livelihoods, infrastructure; flood evacuation - \$100 millions per major flood











### Modeling water availability for multipurpose management and delta restoration

- 1. Likelihood that different <u>e-flow scenarios</u> can be achieved, constrained by water availability and hydropower contracts
- Assess the affect of each e-flow scenario on <u>firm</u> <u>power generation</u> and <u>total annual energy</u> <u>production</u>
- Sensitivity of 100-year flow series to increased water abstractions and reduced runoff scenarios (climate change)



Source: Beilfuss 2001; 2011

| <b>E-flow</b><br>Scenario | Target outflow reliability (%) | Baseline outflow reliability (%) | Firm power reliability (%) | Energy<br>production<br>(GWh/yr) | Energy as % of baseline |
|---------------------------|--------------------------------|----------------------------------|----------------------------|----------------------------------|-------------------------|
| Baseline                  |                                |                                  | 98.4                       | 14393                            | 100.0                   |
| 1                         | 95.6                           | 85.7                             | 97.3                       | 14333                            | 99.6                    |
| 2                         | 94.5                           | 58.2                             | 96.7                       | 14273                            | 99.2                    |
| 3                         | 97.8                           | 7.7                              | 97.3                       | 14407                            | 100.0                   |

Scenario 3 = 4500 m<sup>3</sup>s<sup>-1</sup> flood pulse for 2 weeks in February – achieved with >97% firm power and with no reduction in annual energy production. Target outflows in ~98% of all years, <8% of years under current management

| 9  | 94.5 | 3.3 | 95.8 | 14064 | 97.7 |
|----|------|-----|------|-------|------|
| 10 | 91.2 | 3.3 | 92.5 | 13637 | 94.7 |
| 11 | 72.5 | 4.4 | 89.7 | 13112 | 91.1 |
| 12 | 78.0 | 1.1 | 83.9 | 12963 | 90.1 |
| 13 | 89.0 | 5.5 | 93.3 | 13801 | 95.9 |
| 14 | 78.0 | 0.0 | 90.9 | 13067 | 90.8 |
| 15 | 90.1 | 2.2 | 92.2 | 13612 | 94.6 |
| 16 | 83.5 | 1.1 | 90.0 | 12993 | 90.3 |
| 17 | 24.2 | 0.0 | 87.0 | 12575 | 87.4 |
| 18 | 25.3 | 0.0 | 68.0 | 12018 | 83.5 |

### Is water available for delta within constraints for hydropower production?

- YES—Modeling indicates a range of eflow scenarios are possible
- •Improved flow conditions realized through water reallocation with minimal reduction in hydropower
- •E-flows could help ameliorate climate change flow reductions if power production commitments realigned







### Modeling trade-offs among water users

What are the trade-offs in water requirements (magnitude, duration, timing) among the different users?

What are the "minimum" flood requirements?

Are the "minimum" flood requirements realistic with respect to the hydropower generation?









### **DRIFT**

# Downstream Response to Imposed Flow Transformations

A holistic, scenario-based environmental flows methodology applied to a range of river basins worldwide







### Different water users/concern in the delta

- Small scale agriculture (subsistence and cash crop)
- Irrigated commercial agriculture
- Estuarine ecology and coastal fisheries (esp. prawns)
- Freshwater fisheries
- Livestock
- Large mammals
- Waterbirds/wetland biodiversity
- Wetland vegetation and invasive species
- Natural resource utilisation (socio-economic and cultural)
- Water quality
- Domestic water supply
- In-river navigation
- Public health
- Settlement patterns

### Flow changes considered for the Zambezi Delta

#### The three flow categories were:

- Dry season lowflows (PD + 5)
- The 'annual' flood (PD + 18)
- 1:5 year return flood (PD + 1)

The flow changes encompass a mixture of:
Changes in magnitude.
Changes in duration.
Changes in timing.



## Trade-offs among users? Annual floods



### Are there significant trade-offs among Zambezi Delta water users and concerns?

- NO—range of water users show consistent need for improved flows, especially annual floods
- Strong consensus among experts/representatives
- Scenarios indicate a range of benefits with minimal hydropower reduction



### Moving forward in the Zambezi Delta





- Engaging with water authorities and operators to implement water management scenarios and operational guidelines
- Restoring floodplain connectivity
- Helping communities adapt to water scenarios
- Learning from experimental releases monitoring results for adaptive management